Stability index of linear random dynamical systems

Given a homogeneous linear discrete or continuous dynamical system, its stability index is given by the dimension of the stable manifold of the zero solution. In particular, for the $n$ dimensional case, the zero solution is globally asymptotically stable if and only if this stability index is $n.$...

Full description

Bibliographic Details
Main Authors: Anna Cima, Armengol Gasull, Víctor Mañosa
Format: Article
Language:English
Published: University of Szeged 2021-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8280
_version_ 1797830451459522560
author Anna Cima
Armengol Gasull
Víctor Mañosa
author_facet Anna Cima
Armengol Gasull
Víctor Mañosa
author_sort Anna Cima
collection DOAJ
description Given a homogeneous linear discrete or continuous dynamical system, its stability index is given by the dimension of the stable manifold of the zero solution. In particular, for the $n$ dimensional case, the zero solution is globally asymptotically stable if and only if this stability index is $n.$ Fixed $n,$ let $X$ be the random variable that assigns to each linear random dynamical system its stability index, and let $p_k$ with $k=0,1,\ldots,n,$ denote the probabilities that $P(X=k)$. In this paper we obtain either the exact values $p_k,$ or their estimations by combining the Monte Carlo method with a least square approach that uses some affine relations among the values $p_k,k=0,1,\ldots,n.$ The particular case of $n$-order homogeneous linear random differential or difference equations is also studied in detail.
first_indexed 2024-04-09T13:37:29Z
format Article
id doaj.art-975949bccbcd49a3800f37d528ea456b
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:29Z
publishDate 2021-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-975949bccbcd49a3800f37d528ea456b2023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-03-0120211512710.14232/ejqtde.2021.1.158280Stability index of linear random dynamical systemsAnna Cima0Armengol Gasull1Víctor Mañosa2Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), SpainDepartament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), SpainDepartament de Matemàtiques, Universitat Politècnica de Catalunya Colom 11, 08222 Terrassa (Barcelona), SpainGiven a homogeneous linear discrete or continuous dynamical system, its stability index is given by the dimension of the stable manifold of the zero solution. In particular, for the $n$ dimensional case, the zero solution is globally asymptotically stable if and only if this stability index is $n.$ Fixed $n,$ let $X$ be the random variable that assigns to each linear random dynamical system its stability index, and let $p_k$ with $k=0,1,\ldots,n,$ denote the probabilities that $P(X=k)$. In this paper we obtain either the exact values $p_k,$ or their estimations by combining the Monte Carlo method with a least square approach that uses some affine relations among the values $p_k,k=0,1,\ldots,n.$ The particular case of $n$-order homogeneous linear random differential or difference equations is also studied in detail.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8280stability indexrandom differential equationsrandom difference equationsrandom dynamical systems
spellingShingle Anna Cima
Armengol Gasull
Víctor Mañosa
Stability index of linear random dynamical systems
Electronic Journal of Qualitative Theory of Differential Equations
stability index
random differential equations
random difference equations
random dynamical systems
title Stability index of linear random dynamical systems
title_full Stability index of linear random dynamical systems
title_fullStr Stability index of linear random dynamical systems
title_full_unstemmed Stability index of linear random dynamical systems
title_short Stability index of linear random dynamical systems
title_sort stability index of linear random dynamical systems
topic stability index
random differential equations
random difference equations
random dynamical systems
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8280
work_keys_str_mv AT annacima stabilityindexoflinearrandomdynamicalsystems
AT armengolgasull stabilityindexoflinearrandomdynamicalsystems
AT victormanosa stabilityindexoflinearrandomdynamicalsystems