A biochemically-interpretable machine learning classifier for microbial GWAS

Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...

Full description

Bibliographic Details
Main Authors: Erol S. Kavvas, Laurence Yang, Jonathan M. Monk, David Heckmann, Bernhard O. Palsson
Format: Article
Language:English
Published: Nature Portfolio 2020-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-16310-9
_version_ 1818421229752680448
author Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
author_facet Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
author_sort Erol S. Kavvas
collection DOAJ
description Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.
first_indexed 2024-12-14T13:07:03Z
format Article
id doaj.art-975d3eec652849ec8a3f9bfe2f5ad9c0
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-14T13:07:03Z
publishDate 2020-05-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-975d3eec652849ec8a3f9bfe2f5ad9c02022-12-21T23:00:18ZengNature PortfolioNature Communications2041-17232020-05-0111111110.1038/s41467-020-16310-9A biochemically-interpretable machine learning classifier for microbial GWASErol S. Kavvas0Laurence Yang1Jonathan M. Monk2David Heckmann3Bernhard O. Palsson4Department of Bioengineering, University of CaliforniaDepartment of Chemical Engineering, Queen’s UniversityDepartment of Bioengineering, University of CaliforniaDepartment of Bioengineering, University of CaliforniaDepartment of Bioengineering, University of CaliforniaCurrent machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.https://doi.org/10.1038/s41467-020-16310-9
spellingShingle Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
A biochemically-interpretable machine learning classifier for microbial GWAS
Nature Communications
title A biochemically-interpretable machine learning classifier for microbial GWAS
title_full A biochemically-interpretable machine learning classifier for microbial GWAS
title_fullStr A biochemically-interpretable machine learning classifier for microbial GWAS
title_full_unstemmed A biochemically-interpretable machine learning classifier for microbial GWAS
title_short A biochemically-interpretable machine learning classifier for microbial GWAS
title_sort biochemically interpretable machine learning classifier for microbial gwas
url https://doi.org/10.1038/s41467-020-16310-9
work_keys_str_mv AT erolskavvas abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT laurenceyang abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT jonathanmmonk abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT davidheckmann abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT bernhardopalsson abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT erolskavvas biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT laurenceyang biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT jonathanmmonk biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT davidheckmann biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT bernhardopalsson biochemicallyinterpretablemachinelearningclassifierformicrobialgwas