Detectors in weakly-coupled field theories

Abstract We initiate a study of asymptotic detector operators in weakly-coupled field theories. These operators describe measurements that can be performed at future null infinity in a collider experiment. In a conformal theory they can be identified with light-ray operators, and thus have a direct...

Full description

Bibliographic Details
Main Authors: Simon Caron-Huot, Murat Koloğlu, Petr Kravchuk, David Meltzer, David Simmons-Duffin
Format: Article
Language:English
Published: SpringerOpen 2023-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2023)014
Description
Summary:Abstract We initiate a study of asymptotic detector operators in weakly-coupled field theories. These operators describe measurements that can be performed at future null infinity in a collider experiment. In a conformal theory they can be identified with light-ray operators, and thus have a direct relation to the spectrum of the theory. After a general discussion of the underlying physical picture, we show how infrared divergences of general detector operators can be renormalized in perturbation theory, and how they give rise to detector anomalous dimensions. We discuss in detail how this renormalization can be performed at the intersections of the Regge trajectories where non-trivial mixing occurs, which is related to the poles in anomalous dimensions at special values of spin. Finally, we discuss novel horizontal trajectories in scalar theories and show how they contribute to correlation functions. Our calculations are done in the example of ϕ 4 theory in d = 4 − ϵ dimensions, but the methods are applicable more broadly. At the Wilson-Fisher fixed point our results include an explicit expression for the Pomeron light-ray operator at two loops, as well as a prediction for the value of the Regge intercept at five loops.
ISSN:1029-8479