Bearing Fault Diagnosis With Envelope Analysis and Machine Learning Approaches Using CWRU Dataset

Predictive maintenance in machines aims to anticipate failures. In rotating machines, the component that suffers the most wear and tear is the bearings. Currently, based on the Industry 4.0 paradigm, advances have been made in obtaining data, specifically, vibration signals that can be used to predi...

Full description

Bibliographic Details
Main Authors: Miguel Alonso-Gonzalez, Vicente Garcia Diaz, Benjamin Lopez Perez, B. Cristina Pelayo G-Bustelo, John Petearson Anzola
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10145440/
Description
Summary:Predictive maintenance in machines aims to anticipate failures. In rotating machines, the component that suffers the most wear and tear is the bearings. Currently, based on the Industry 4.0 paradigm, advances have been made in obtaining data, specifically, vibration signals that can be used to predict deterioration using various techniques. In this study, we have applied vibration analysis to obtain features that can be used in an optimal Machine Learning model using a public dataset from CWRU, widely used in research, which contains data on bearing failures. The main objective of this research is to detect bearing failures using a minimum set of observations and selecting the minimum number of features. To achieve this, frequency domain vibration analysis, combined with envelope analysis, is utilized as an effective method for detecting bearing failures. The results were further improved by incorporating an optimal bandwidth determined using the kurtogram. When the results of the envelope analysis are applied to various machine learning models, using the calculated amplitudes as predictors, the Kernel Naive Bayes model achieved an accuracy of 94.4%. Meanwhile, the Decision Tree (Fine Tree) and KNN (Fine KNN) models demonstrate exceptional accuracy, achieving a perfect accuracy rate of 100%.
ISSN:2169-3536