Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods

Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, a...

Full description

Bibliographic Details
Main Authors: Pablo Antúnez-Muiños, Víctor Vicente-Palacios, Pablo Pérez-Sánchez, Jesús Sampedro-Gómez, Antonio Sánchez-Puente, Pedro Ignacio Dorado-Díaz, Luis Nombela-Franco, Pablo Salinas, Hipólito Gutiérrez-García, Ignacio Amat-Santos, Vicente Peral, Antonio Morcuende, Lluis Asmarats, Xavier Freixa, Ander Regueiro, Berenice Caneiro-Queija, Rodrigo Estevez-Loureiro, Josep Rodés-Cabau, Pedro Luis Sánchez, Ignacio Cruz-González
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Journal of Personalized Medicine
Subjects:
Online Access:https://www.mdpi.com/2075-4426/12/9/1413
_version_ 1797486103434887168
author Pablo Antúnez-Muiños
Víctor Vicente-Palacios
Pablo Pérez-Sánchez
Jesús Sampedro-Gómez
Antonio Sánchez-Puente
Pedro Ignacio Dorado-Díaz
Luis Nombela-Franco
Pablo Salinas
Hipólito Gutiérrez-García
Ignacio Amat-Santos
Vicente Peral
Antonio Morcuende
Lluis Asmarats
Xavier Freixa
Ander Regueiro
Berenice Caneiro-Queija
Rodrigo Estevez-Loureiro
Josep Rodés-Cabau
Pedro Luis Sánchez
Ignacio Cruz-González
author_facet Pablo Antúnez-Muiños
Víctor Vicente-Palacios
Pablo Pérez-Sánchez
Jesús Sampedro-Gómez
Antonio Sánchez-Puente
Pedro Ignacio Dorado-Díaz
Luis Nombela-Franco
Pablo Salinas
Hipólito Gutiérrez-García
Ignacio Amat-Santos
Vicente Peral
Antonio Morcuende
Lluis Asmarats
Xavier Freixa
Ander Regueiro
Berenice Caneiro-Queija
Rodrigo Estevez-Loureiro
Josep Rodés-Cabau
Pedro Luis Sánchez
Ignacio Cruz-González
author_sort Pablo Antúnez-Muiños
collection DOAJ
description Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data.
first_indexed 2024-03-09T23:29:24Z
format Article
id doaj.art-976a175df3f741799f07016d4c42ddf7
institution Directory Open Access Journal
issn 2075-4426
language English
last_indexed 2024-03-09T23:29:24Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Journal of Personalized Medicine
spelling doaj.art-976a175df3f741799f07016d4c42ddf72023-11-23T17:12:42ZengMDPI AGJournal of Personalized Medicine2075-44262022-08-01129141310.3390/jpm12091413Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical MethodsPablo Antúnez-Muiños0Víctor Vicente-Palacios1Pablo Pérez-Sánchez2Jesús Sampedro-Gómez3Antonio Sánchez-Puente4Pedro Ignacio Dorado-Díaz5Luis Nombela-Franco6Pablo Salinas7Hipólito Gutiérrez-García8Ignacio Amat-Santos9Vicente Peral10Antonio Morcuende11Lluis Asmarats12Xavier Freixa13Ander Regueiro14Berenice Caneiro-Queija15Rodrigo Estevez-Loureiro16Josep Rodés-Cabau17Pedro Luis Sánchez18Ignacio Cruz-González19CIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainPhilips Ibérica, 28050 Madrid, SpainCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainInstituto Cardiovascular, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, SpainInstituto Cardiovascular, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, SpainCIBERCV, Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, 47003 Valladolid, SpainCIBERCV, Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, 47003 Valladolid, SpainDepartment of Cardiology, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma, SpainDepartment of Cardiology, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma, SpainQuebec Heart and Kung Institute, Laval University, Quebec City, QC G1V 0A6, CanadaInstitut Clínic Cardiovascular, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, SpainInstitut Clínic Cardiovascular, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, SpainUniversity Hospital Alvaro Cunqueiro, 36312 Vigo, SpainUniversity Hospital Alvaro Cunqueiro, 36312 Vigo, SpainQuebec Heart and Kung Institute, Laval University, Quebec City, QC G1V 0A6, CanadaCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainCIBERCV, University Hospital of Salamanca, 37007 Salamanca, SpainDevice-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data.https://www.mdpi.com/2075-4426/12/9/1413left atrial appendage closuredevice-related thrombosisatrial fibrillationmachine learningmultivariable analysispredictors
spellingShingle Pablo Antúnez-Muiños
Víctor Vicente-Palacios
Pablo Pérez-Sánchez
Jesús Sampedro-Gómez
Antonio Sánchez-Puente
Pedro Ignacio Dorado-Díaz
Luis Nombela-Franco
Pablo Salinas
Hipólito Gutiérrez-García
Ignacio Amat-Santos
Vicente Peral
Antonio Morcuende
Lluis Asmarats
Xavier Freixa
Ander Regueiro
Berenice Caneiro-Queija
Rodrigo Estevez-Loureiro
Josep Rodés-Cabau
Pedro Luis Sánchez
Ignacio Cruz-González
Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
Journal of Personalized Medicine
left atrial appendage closure
device-related thrombosis
atrial fibrillation
machine learning
multivariable analysis
predictors
title Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_full Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_fullStr Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_full_unstemmed Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_short Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_sort predictive power for thrombus detection after atrial appendage closure machine learning vs classical methods
topic left atrial appendage closure
device-related thrombosis
atrial fibrillation
machine learning
multivariable analysis
predictors
url https://www.mdpi.com/2075-4426/12/9/1413
work_keys_str_mv AT pabloantunezmuinos predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT victorvicentepalacios predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT pabloperezsanchez predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT jesussampedrogomez predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT antoniosanchezpuente predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT pedroignaciodoradodiaz predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT luisnombelafranco predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT pablosalinas predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT hipolitogutierrezgarcia predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT ignacioamatsantos predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT vicenteperal predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT antoniomorcuende predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT lluisasmarats predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT xavierfreixa predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT anderregueiro predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT berenicecaneiroqueija predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT rodrigoestevezloureiro predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT joseprodescabau predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT pedroluissanchez predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT ignaciocruzgonzalez predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods