Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates

Euler’s equation relates the change in angular momentum of a rigid body to the applied torque. This paper uses Lagrangian dynamics to derive Euler’s equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as we...

Full description

Bibliographic Details
Main Authors: Dennis S. Bernstein, Ankit Goel, Omran Kouba
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/12/2727
_version_ 1797593661910810624
author Dennis S. Bernstein
Ankit Goel
Omran Kouba
author_facet Dennis S. Bernstein
Ankit Goel
Omran Kouba
author_sort Dennis S. Bernstein
collection DOAJ
description Euler’s equation relates the change in angular momentum of a rigid body to the applied torque. This paper uses Lagrangian dynamics to derive Euler’s equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, quaternions. This paper fills a gap in the literature by using generalized coordinates to parameterize the angular velocity vector and thereby transform the dynamics obtained from Lagrangian dynamics into Euler’s equation for rigid-body rotation.
first_indexed 2024-03-11T02:11:30Z
format Article
id doaj.art-97707b73b9ab4e5283b7842fd3943581
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T02:11:30Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-97707b73b9ab4e5283b7842fd39435812023-11-18T11:28:56ZengMDPI AGMathematics2227-73902023-06-011112272710.3390/math11122727Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized CoordinatesDennis S. Bernstein0Ankit Goel1Omran Kouba2Aerospace Engineering Department, University of Michigan, Ann Arbor, MI 48109, USAMechanical Engineering Department, University of Maryland, Baltimore County, MD 20742, USADepartment of Mathematics, Higher Institute for Applied Sciences and Technology, Damascus 31983, SyriaEuler’s equation relates the change in angular momentum of a rigid body to the applied torque. This paper uses Lagrangian dynamics to derive Euler’s equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, quaternions. This paper fills a gap in the literature by using generalized coordinates to parameterize the angular velocity vector and thereby transform the dynamics obtained from Lagrangian dynamics into Euler’s equation for rigid-body rotation.https://www.mdpi.com/2227-7390/11/12/2727angular velocityrotationquaternions
spellingShingle Dennis S. Bernstein
Ankit Goel
Omran Kouba
Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
Mathematics
angular velocity
rotation
quaternions
title Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
title_full Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
title_fullStr Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
title_full_unstemmed Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
title_short Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates
title_sort deriving euler s equation for rigid body rotation via lagrangian dynamics with generalized coordinates
topic angular velocity
rotation
quaternions
url https://www.mdpi.com/2227-7390/11/12/2727
work_keys_str_mv AT dennissbernstein derivingeulersequationforrigidbodyrotationvialagrangiandynamicswithgeneralizedcoordinates
AT ankitgoel derivingeulersequationforrigidbodyrotationvialagrangiandynamicswithgeneralizedcoordinates
AT omrankouba derivingeulersequationforrigidbodyrotationvialagrangiandynamicswithgeneralizedcoordinates