Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]

In [Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5–17], Hamid claims that if G is a connected bipartite graph with bipartition {X, Y } such that |X| ≤ |Y| and |X| = γ(G), then γit(G) = γ(G) + 1 if and only if every vertex x in X is adjacent to at least two pend...

Full description

Bibliographic Details
Main Authors: Guzman-Garcia Emma, Sánchez-López Rocío
Format: Article
Language:English
Published: University of Zielona Góra 2022-05-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2297
_version_ 1797713159783448576
author Guzman-Garcia Emma
Sánchez-López Rocío
author_facet Guzman-Garcia Emma
Sánchez-López Rocío
author_sort Guzman-Garcia Emma
collection DOAJ
description In [Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5–17], Hamid claims that if G is a connected bipartite graph with bipartition {X, Y } such that |X| ≤ |Y| and |X| = γ(G), then γit(G) = γ(G) + 1 if and only if every vertex x in X is adjacent to at least two pendant vertices. In this corrigendum, we give a counterexample for the sufficient condition of this sentence and we provide a right characterization. On the other hand, we show an example that disproves a construction which is given in the same paper.
first_indexed 2024-03-12T07:32:36Z
format Article
id doaj.art-977c33dcfb124e2fb98647c9b20f83b1
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T07:32:36Z
publishDate 2022-05-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-977c33dcfb124e2fb98647c9b20f83b12023-09-02T21:43:05ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922022-05-0142260161110.7151/dmgt.2297Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]Guzman-Garcia Emma0Sánchez-López Rocío1Facultad de Ciencias, Universidad Nacional Autónoma de México, Círcuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Ciudad de México, CDMXFacultad de Ciencias, Universidad Nacional Autónoma de México, Círcuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Ciudad de México, CDMXIn [Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5–17], Hamid claims that if G is a connected bipartite graph with bipartition {X, Y } such that |X| ≤ |Y| and |X| = γ(G), then γit(G) = γ(G) + 1 if and only if every vertex x in X is adjacent to at least two pendant vertices. In this corrigendum, we give a counterexample for the sufficient condition of this sentence and we provide a right characterization. On the other hand, we show an example that disproves a construction which is given in the same paper.https://doi.org/10.7151/dmgt.2297dominationindependenttransversalcoveringmatching05c69
spellingShingle Guzman-Garcia Emma
Sánchez-López Rocío
Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
Discussiones Mathematicae Graph Theory
domination
independent
transversal
covering
matching
05c69
title Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
title_full Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
title_fullStr Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
title_full_unstemmed Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
title_short Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
title_sort corrigendum to independent transversal domination in graphs discuss math graph theory 32 2012 5 17
topic domination
independent
transversal
covering
matching
05c69
url https://doi.org/10.7151/dmgt.2297
work_keys_str_mv AT guzmangarciaemma corrigendumtoindependenttransversaldominationingraphsdiscussmathgraphtheory322012517
AT sanchezlopezrocio corrigendumtoindependenttransversaldominationingraphsdiscussmathgraphtheory322012517