In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage

Achieving aqueous zinc‐ion batteries (AZIBs) with high capacity and long lifetime remains challenging because the intense charge repulsion of multivalent ions causes structural instability and sluggish kinetics. The electrochemical activity brought by in situ structure optimization has dramatically...

Full description

Bibliographic Details
Main Authors: Huibing Lu, Zhengchunyu Zhang, Xuguang An, Jinkui Feng, Shenglin Xiong, Baojuan Xi
Format: Article
Language:English
Published: Wiley-VCH 2023-11-01
Series:Small Structures
Subjects:
Online Access:https://doi.org/10.1002/sstr.202300191
_version_ 1797504925062660096
author Huibing Lu
Zhengchunyu Zhang
Xuguang An
Jinkui Feng
Shenglin Xiong
Baojuan Xi
author_facet Huibing Lu
Zhengchunyu Zhang
Xuguang An
Jinkui Feng
Shenglin Xiong
Baojuan Xi
author_sort Huibing Lu
collection DOAJ
description Achieving aqueous zinc‐ion batteries (AZIBs) with high capacity and long lifetime remains challenging because the intense charge repulsion of multivalent ions causes structural instability and sluggish kinetics. The electrochemical activity brought by in situ structure optimization has dramatically improved the electrochemical performance. Hereinto, the nanocomposites consisting of VN/V2O3 heterostructure composited with carbon (VN/V2O3@C) by a self‐template strategy are synthesized. The VN/V2O3 heterostructure undergoes an in situ electrochemical activation phase transition to highly reversible V2NO after the first cycle. The interface of V2O3 and VN induces ion displacement polarization under the action of the applied electric field, making it easier for oxygen and nitrogen atoms to dope into the crystal structure of VN and V2O3, contributing to V2NO phase formation. Furthermore, theory calculations demonstrate that V2NO can provide favorable adsorption for reversible Zn2+ storage. The V2NO@C electrode thus delivers high reversible capacities of 490.2 mAh g−1 after 310 cycles at 200 mA g−1 and impressive long‐cycle stability over 6000 cycles at 10 A g−1. Herein, it sheds new light on the mechanism of in situ electrochemical phase transition from heterostructures into one phase, which is a great revolution in designing cathode materials for AZIBs.
first_indexed 2024-03-10T04:11:20Z
format Article
id doaj.art-977d247f228d40b99814e965bdd3cae4
institution Directory Open Access Journal
issn 2688-4062
language English
last_indexed 2024-03-10T04:11:20Z
publishDate 2023-11-01
publisher Wiley-VCH
record_format Article
series Small Structures
spelling doaj.art-977d247f228d40b99814e965bdd3cae42023-11-23T08:10:45ZengWiley-VCHSmall Structures2688-40622023-11-01411n/an/a10.1002/sstr.202300191In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion StorageHuibing Lu0Zhengchunyu Zhang1Xuguang An2Jinkui Feng3Shenglin Xiong4Baojuan Xi5School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. ChinaSchool of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. ChinaSchool of Mechanical Engineering Chengdu University Chengdu 610106 P. R. ChinaSchool of Materials Science and Engineering Shandong University Jinan 250100 P. R. ChinaSchool of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. ChinaSchool of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. ChinaAchieving aqueous zinc‐ion batteries (AZIBs) with high capacity and long lifetime remains challenging because the intense charge repulsion of multivalent ions causes structural instability and sluggish kinetics. The electrochemical activity brought by in situ structure optimization has dramatically improved the electrochemical performance. Hereinto, the nanocomposites consisting of VN/V2O3 heterostructure composited with carbon (VN/V2O3@C) by a self‐template strategy are synthesized. The VN/V2O3 heterostructure undergoes an in situ electrochemical activation phase transition to highly reversible V2NO after the first cycle. The interface of V2O3 and VN induces ion displacement polarization under the action of the applied electric field, making it easier for oxygen and nitrogen atoms to dope into the crystal structure of VN and V2O3, contributing to V2NO phase formation. Furthermore, theory calculations demonstrate that V2NO can provide favorable adsorption for reversible Zn2+ storage. The V2NO@C electrode thus delivers high reversible capacities of 490.2 mAh g−1 after 310 cycles at 200 mA g−1 and impressive long‐cycle stability over 6000 cycles at 10 A g−1. Herein, it sheds new light on the mechanism of in situ electrochemical phase transition from heterostructures into one phase, which is a great revolution in designing cathode materials for AZIBs.https://doi.org/10.1002/sstr.202300191aqueous zinc-ion batteriesdensity functional theoryhighly reversible V2NOin situ electrochemical activationVN/V2O3@C heterostructure
spellingShingle Huibing Lu
Zhengchunyu Zhang
Xuguang An
Jinkui Feng
Shenglin Xiong
Baojuan Xi
In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
Small Structures
aqueous zinc-ion batteries
density functional theory
highly reversible V2NO
in situ electrochemical activation
VN/V2O3@C heterostructure
title In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
title_full In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
title_fullStr In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
title_full_unstemmed In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
title_short In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage
title_sort in situ electrochemically transforming vn v2o3 heterostructure to highly reversible v2no for excellent zinc ion storage
topic aqueous zinc-ion batteries
density functional theory
highly reversible V2NO
in situ electrochemical activation
VN/V2O3@C heterostructure
url https://doi.org/10.1002/sstr.202300191
work_keys_str_mv AT huibinglu insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage
AT zhengchunyuzhang insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage
AT xuguangan insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage
AT jinkuifeng insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage
AT shenglinxiong insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage
AT baojuanxi insituelectrochemicallytransformingvnv2o3heterostructuretohighlyreversiblev2noforexcellentzincionstorage