EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols

In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox condi...

Full description

Bibliographic Details
Main Authors: N. Glock, A. Eisenhauer, V. Liebetrau, M. Wiedenbeck, C. Hensen, G. Nehrke
Format: Article
Language:English
Published: Copernicus Publications 2012-01-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/9/341/2012/bg-9-341-2012.pdf
_version_ 1811283382445801472
author N. Glock
A. Eisenhauer
V. Liebetrau
M. Wiedenbeck
C. Hensen
G. Nehrke
author_facet N. Glock
A. Eisenhauer
V. Liebetrau
M. Wiedenbeck
C. Hensen
G. Nehrke
author_sort N. Glock
collection DOAJ
description In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species <i>Uvigerina peregrina</i> and <i>Bolivina spissa</i> were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned <i>U. peregrina</i> specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of <i>B. spissa</i>. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in <i>B. spissa</i> nor in <i>U. peregrina</i> were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of <i>B. spissa</i> from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol<sup>−1</sup> for the Fe/Ca and 1.68(±0.41) μmol mol<sup>−1</sup> for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1&sigma;<sub>[Mn/Ca]</sub> = 0.35–2.07 μmol mol<sup>−1</sup>; 1&sigma;<sub>[Fe/Ca]</sub> = 93.9–188.4 μmol mol<sup>−1</sup>). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol<sup>−1</sup>) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol<sup>−1</sup>). However, the Fe/Ca ratios in <i>B. spissa</i> show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol<sup>−1</sup>) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of <i>B. spissa</i> at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.
first_indexed 2024-04-13T02:10:36Z
format Article
id doaj.art-97855378fd4042b89f1519171b180731
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-04-13T02:10:36Z
publishDate 2012-01-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-97855378fd4042b89f1519171b1807312022-12-22T03:07:19ZengCopernicus PublicationsBiogeosciences1726-41701726-41892012-01-019134135910.5194/bg-9-341-2012EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocolsN. Glock0A. Eisenhauer1V. Liebetrau2M. Wiedenbeck3C. Hensen4G. Nehrke5Sonderforschungsbereich 754, Christian-Albrechts-University Kiel, Climate-Biogeochemistry Interactions in the Tropical Ocean, Kiel, GermanyHelmholtz-Zentrum für Ozeanforschung Kiel, GEOMAR, Wischhofstr. 1&ndash;3, 24148 Kiel, GermanyHelmholtz-Zentrum für Ozeanforschung Kiel, GEOMAR, Wischhofstr. 1&ndash;3, 24148 Kiel, GermanyHelmholtz-Zentrum Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, GermanyHelmholtz-Zentrum für Ozeanforschung Kiel, GEOMAR, Wischhofstr. 1&ndash;3, 24148 Kiel, GermanyAlfred Wegener Institut für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, GermanyIn this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species <i>Uvigerina peregrina</i> and <i>Bolivina spissa</i> were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned <i>U. peregrina</i> specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of <i>B. spissa</i>. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in <i>B. spissa</i> nor in <i>U. peregrina</i> were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of <i>B. spissa</i> from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol<sup>−1</sup> for the Fe/Ca and 1.68(±0.41) μmol mol<sup>−1</sup> for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1&sigma;<sub>[Mn/Ca]</sub> = 0.35–2.07 μmol mol<sup>−1</sup>; 1&sigma;<sub>[Fe/Ca]</sub> = 93.9–188.4 μmol mol<sup>−1</sup>). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol<sup>−1</sup>) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol<sup>−1</sup>). However, the Fe/Ca ratios in <i>B. spissa</i> show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol<sup>−1</sup>) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of <i>B. spissa</i> at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.http://www.biogeosciences.net/9/341/2012/bg-9-341-2012.pdf
spellingShingle N. Glock
A. Eisenhauer
V. Liebetrau
M. Wiedenbeck
C. Hensen
G. Nehrke
EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
Biogeosciences
title EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
title_full EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
title_fullStr EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
title_full_unstemmed EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
title_short EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols
title_sort emp and sims studies on mn ca and fe ca systematics in benthic foraminifera from the peruvian omz a contribution to the identification of potential redox proxies and the impact of cleaning protocols
url http://www.biogeosciences.net/9/341/2012/bg-9-341-2012.pdf
work_keys_str_mv AT nglock empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols
AT aeisenhauer empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols
AT vliebetrau empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols
AT mwiedenbeck empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols
AT chensen empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols
AT gnehrke empandsimsstudiesonmncaandfecasystematicsinbenthicforaminiferafromtheperuvianomzacontributiontotheidentificationofpotentialredoxproxiesandtheimpactofcleaningprotocols