Summary: | Background: To improve the selection of patients for ureteroscopy, avoid excessive testing and reduce costs, we aimed to develop and validate a diagnostic urine assay for upper tract urinary carcinoma (UTUC). Methods: In this cohort study we recruited 402 patients from six Hunan hospitals who underwent ureteroscopy for hematuria, including 95 patients with UTUC and 307 patients with non-UTUC findings. Midstream morning urine samples were collected before ureteroscopy and surgery. DNA was extracted and qPCR was used to analyze mutations in <i>TERT</i> and <i>FGFR3</i> and the methylation of <i>NRN1</i>. In the training set, the random forest algorithm was used to build an optimal panel. Lastly, the Beijing cohort (<i>n</i> = 76) was used to validate the panel. Results: The panel combining the methylation with mutation markers led to an AUC of 0.958 (95% CI: 0.933–0.975) with a sensitivity of 91.58% and a specificity of 94.79%. The panel presented a favorable diagnostic value for UTUC vs. other malignant tumors (AUC = 0.920) and UTUC vs. benign disease (AUC = 0.975). Furthermore, combining the panel with age revealed satisfactory results, with 93.68% sensitivity, 94.44% specificity, AUC = 0.970 and NPV = 98.6%. In the external validation process, the model showed an AUC of 0.971, a sensitivity of 95.83% and a specificity of 92.31, respectively. Conclusions: A novel diagnostic model for analyzing hematuria patients for the risk of UTUC was developed, which could lead to a reduction in the need for invasive examinations. Combining <i>NRN1</i> methylation and gene mutation (<i>FGFR3</i> and <i>TERT</i>) with age resulted in a validated accurate prediction model.
|