Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of <it>Antheraea mylitta </it>cytoplasmic polyhedrosis virus

<p>Abstract</p> <p>Background</p> <p><it>Antheraea mylitta </it>cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of <it>Reoviridae </it>family, infects Indian non-mulberry silkworm, <it>Antheraea mylitta</it>, and contains 11 segme...

Full description

Bibliographic Details
Main Authors: Chakrabarti Mrinmay, Ghorai Suvankar, Mani Saravana KK, Ghosh Ananta K
Format: Article
Language:English
Published: BMC 2010-08-01
Series:Virology Journal
Online Access:http://www.virologyj.com/content/7/1/181
Description
Summary:<p>Abstract</p> <p>Background</p> <p><it>Antheraea mylitta </it>cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of <it>Reoviridae </it>family, infects Indian non-mulberry silkworm, <it>Antheraea mylitta</it>, and contains 11 segmented double stranded RNA (S1-S11) in its genome. Some of its genome segments (S2 and S6-S11) have been previously characterized but genome segments encoding viral capsid have not been characterized.</p> <p>Results</p> <p>In this study genome segments 1 (S1) and 3 (S3) of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related <it>cypoviruses </it>like <it>Bombyx mori </it>CPV (BmCPV), <it>Lymantria dispar </it>CPV (LdCPV), and <it>Dendrolimus punctatus </it>CPV (DpCPV). The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in <it>Escherichia coli </it>M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs) by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein.</p> <p>Conclusion</p> <p>Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3 encoded viral structural proteins can self assemble to form viral outer capsid and S1 encoded protein remains associated with it as inner capsid to maintain the stability. Further studies will help to understand the molecular mechanism of capsid formation during cypovirus replication.</p>
ISSN:1743-422X