Summary: | The formation of vortex rings during the left ventricle (LV) filling is an optimized mechanism for blood transport, and the vorticity is an important measure of a healthy heart and LV. There is a relationship between abnormal diastolic vortex structure and impaired LV, and hence vortex identification is vital for understanding the underlying physical mechanism of blood flow. However, due to lack of quantitative methods, defining, computing and mapping the left ventricular vortices has not been rigorously studied previously. In this paper, a novel method of vortex detection based on the convolutional neural network (CNN) is created, which enables determination of the boundary of vortex and integrates the local and global flow fields. We have used the CNN-based vortex identification and vector flow mapping (VFM) to quantify left ventricular vorticity. In the clinical application of our methodology to healthy subjects and uremic patients, we find differences in the strength and position of the vortices between healthy and patients with uremia cardiomyopathy. Our results can accurately indicate the role of vortex formation in intracardiac flow, and provide new insights into the blood flow within the heart structure.
|