Sturmian comparison theorem for hyperbolic equations on a rectangular prism

In this paper, new Sturmian comparison results were obtained for linear and nonlinear hyperbolic equations on a rectangular prism. The results obtained for linear equations extended those given by Kreith [Sturmian theorems on hyperbolic equations, Proc. Amer. Math. Soc., 22 (1969), 277-281] in which...

Full description

Bibliographic Details
Main Authors: Abdullah Özbekler, Kübra Uslu İşler, Jehad Alzabut
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024232?viewType=HTML
Description
Summary:In this paper, new Sturmian comparison results were obtained for linear and nonlinear hyperbolic equations on a rectangular prism. The results obtained for linear equations extended those given by Kreith [Sturmian theorems on hyperbolic equations, Proc. Amer. Math. Soc., 22 (1969), 277-281] in which the Sturmian comparison theorem for linear equations was obtained on a rectangular region in the plane. For the purpose of verification, an application was described using an eigenvalue problem.
ISSN:2473-6988