Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker

In vitro cell cultures are used as models for drug discovery. The detection of cell damage biomarkers such as adenylate kinase (AK) is often used in drug screening and cell biology experiments. A microfluidic platform for AK detection was developed with the capability of detecting the AK resulting f...

Full description

Bibliographic Details
Main Authors: Cristiana Domingues, Pedro Mendes Fontes, Pedro G. M. Condelipes, Vanda Marques, Marta B. Afonso, Virginia Chu, Cecília M. P. Rodrigues, João Pedro Conde
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/11/4/220
Description
Summary:In vitro cell cultures are used as models for drug discovery. The detection of cell damage biomarkers such as adenylate kinase (AK) is often used in drug screening and cell biology experiments. A microfluidic platform for AK detection was developed with the capability of detecting the AK resulting from the lysis of 10–100 human colorectal adenocarcinoma HCT116 cells. For this assay, AK was captured on the surface of microbeads integrated into a microfluidic device and optically detected using a fluorescently labelled anti-AK antibody. Microfluidic technologies have in addition been used to develop two- and three-dimensional cell culture models that have the potential to accelerate drug discovery. The microfluidic platform was used to detect the AK resulting from the lysis of HCT116 cells cultivated in a microfluidic biochip, demonstrating the potential for the integration of the miniaturised biosensor with the cell chip.
ISSN:2227-9040