MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis

<italic>Time Series Analysis</italic> (<italic>TSA</italic>) is a critical workload to extract valuable information from collections of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping (sDTW) is the state-of-the-art algorithm...

Full description

Bibliographic Details
Main Authors: Ivan Fernandez, Christina Giannoula, Aditya Manglik, Ricardo Quislant, Nika Mansouri Ghiasi, Juan Gomez-Luna, Eladio Gutierrez, Oscar Plata, Onur Mutlu
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10458946/
_version_ 1797243376058236928
author Ivan Fernandez
Christina Giannoula
Aditya Manglik
Ricardo Quislant
Nika Mansouri Ghiasi
Juan Gomez-Luna
Eladio Gutierrez
Oscar Plata
Onur Mutlu
author_facet Ivan Fernandez
Christina Giannoula
Aditya Manglik
Ricardo Quislant
Nika Mansouri Ghiasi
Juan Gomez-Luna
Eladio Gutierrez
Oscar Plata
Onur Mutlu
author_sort Ivan Fernandez
collection DOAJ
description <italic>Time Series Analysis</italic> (<italic>TSA</italic>) is a critical workload to extract valuable information from collections of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping (sDTW) is the state-of-the-art algorithm for high-accuracy TSA. We find that the performance and energy efficiency of sDTW on conventional CPU and GPU platforms are heavily burdened by the latency and energy overheads of data movement between the compute and the memory units. sDTW exhibits low arithmetic intensity and low data reuse on conventional platforms, stemming from poor amortization of the data movement overheads. To improve the performance and energy efficiency of the sDTW algorithm, we propose MATSA, the first <underline>M</underline>agnetoresistive RAM (MRAM)-based <underline>A</underline>ccelerator for <underline>TSA</underline>. MATSA leverages Processing-Using-Memory (PUM) based on MRAM crossbars to minimize data movement overheads and exploit parallelism in sDTW. MATSA improves performance by <inline-formula> <tex-math notation="LaTeX">$7.35\times /6.15\times /6.31\times $ </tex-math></inline-formula> and energy efficiency by <inline-formula> <tex-math notation="LaTeX">$11.29\times /4.21\times /2.65\times $ </tex-math></inline-formula> over server-class CPU, GPU, and Processing-Near-Memory platforms, respectively.
first_indexed 2024-04-24T18:54:08Z
format Article
id doaj.art-97c47f1741df4ecf9342ec359e741af0
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-24T18:54:08Z
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-97c47f1741df4ecf9342ec359e741af02024-03-26T17:45:18ZengIEEEIEEE Access2169-35362024-01-0112367273674210.1109/ACCESS.2024.337331110458946MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series AnalysisIvan Fernandez0https://orcid.org/0000-0001-6133-5670Christina Giannoula1https://orcid.org/0000-0003-0162-4547Aditya Manglik2https://orcid.org/0000-0003-4189-8761Ricardo Quislant3https://orcid.org/0000-0002-4705-7042Nika Mansouri Ghiasi4https://orcid.org/0000-0002-0833-0042Juan Gomez-Luna5https://orcid.org/0000-0002-6514-1571Eladio Gutierrez6https://orcid.org/0000-0001-9748-9161Oscar Plata7https://orcid.org/0000-0003-2233-0011Onur Mutlu8https://orcid.org/0000-0002-0075-2312Department of Computer Architecture, University of M&#x00E1;laga, M&#x00E1;laga, SpainDepartment of Information Technology and Electrical Engineering (D-ITET), ETH Z&#x00FC;rich, Z&#x00FC;rich, SwitzerlandDepartment of Information Technology and Electrical Engineering (D-ITET), ETH Z&#x00FC;rich, Z&#x00FC;rich, SwitzerlandDepartment of Computer Architecture, University of M&#x00E1;laga, M&#x00E1;laga, SpainDepartment of Information Technology and Electrical Engineering (D-ITET), ETH Z&#x00FC;rich, Z&#x00FC;rich, SwitzerlandDepartment of Information Technology and Electrical Engineering (D-ITET), ETH Z&#x00FC;rich, Z&#x00FC;rich, SwitzerlandDepartment of Computer Architecture, University of M&#x00E1;laga, M&#x00E1;laga, SpainDepartment of Computer Architecture, University of M&#x00E1;laga, M&#x00E1;laga, SpainDepartment of Information Technology and Electrical Engineering (D-ITET), ETH Z&#x00FC;rich, Z&#x00FC;rich, Switzerland<italic>Time Series Analysis</italic> (<italic>TSA</italic>) is a critical workload to extract valuable information from collections of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping (sDTW) is the state-of-the-art algorithm for high-accuracy TSA. We find that the performance and energy efficiency of sDTW on conventional CPU and GPU platforms are heavily burdened by the latency and energy overheads of data movement between the compute and the memory units. sDTW exhibits low arithmetic intensity and low data reuse on conventional platforms, stemming from poor amortization of the data movement overheads. To improve the performance and energy efficiency of the sDTW algorithm, we propose MATSA, the first <underline>M</underline>agnetoresistive RAM (MRAM)-based <underline>A</underline>ccelerator for <underline>TSA</underline>. MATSA leverages Processing-Using-Memory (PUM) based on MRAM crossbars to minimize data movement overheads and exploit parallelism in sDTW. MATSA improves performance by <inline-formula> <tex-math notation="LaTeX">$7.35\times /6.15\times /6.31\times $ </tex-math></inline-formula> and energy efficiency by <inline-formula> <tex-math notation="LaTeX">$11.29\times /4.21\times /2.65\times $ </tex-math></inline-formula> over server-class CPU, GPU, and Processing-Near-Memory platforms, respectively.https://ieeexplore.ieee.org/document/10458946/Time series analysisprocessing-using-memorymemory-boundemerging technologies
spellingShingle Ivan Fernandez
Christina Giannoula
Aditya Manglik
Ricardo Quislant
Nika Mansouri Ghiasi
Juan Gomez-Luna
Eladio Gutierrez
Oscar Plata
Onur Mutlu
MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
IEEE Access
Time series analysis
processing-using-memory
memory-bound
emerging technologies
title MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
title_full MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
title_fullStr MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
title_full_unstemmed MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
title_short MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis
title_sort matsa an mram based energy efficient accelerator for time series analysis
topic Time series analysis
processing-using-memory
memory-bound
emerging technologies
url https://ieeexplore.ieee.org/document/10458946/
work_keys_str_mv AT ivanfernandez matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT christinagiannoula matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT adityamanglik matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT ricardoquislant matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT nikamansourighiasi matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT juangomezluna matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT eladiogutierrez matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT oscarplata matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis
AT onurmutlu matsaanmrambasedenergyefficientacceleratorfortimeseriesanalysis