Statistical Approach to Assess Chill and Heat Requirements of Olive Tree Based on Flowering Date and Temperatures Data: Towards Selection of Adapted Cultivars to Global Warming

Delineating chilling and forcing periods is one of the challenging topics in understanding how temperatures drive the timing of budburst and bloom in fruit tree species. Here, we investigated this question on olive trees, using flowering data collected over six years on 331 cultivars in the worldwid...

Full description

Bibliographic Details
Main Authors: Omar Abou-Saaid, Adnane El Yaacoubi, Abdelmajid Moukhli, Ahmed El Bakkali, Sara Oulbi, Magalie Delalande, Isabelle Farrera, Jean-Jacques Kelner, Sylvia Lochon-Menseau, Cherkaoui El Modafar, Hayat Zaher, Bouchaib Khadari
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/12/12/2975
Description
Summary:Delineating chilling and forcing periods is one of the challenging topics in understanding how temperatures drive the timing of budburst and bloom in fruit tree species. Here, we investigated this question on olive trees, using flowering data collected over six years on 331 cultivars in the worldwide collection of Marrakech, Morocco. Using a Partial Least Squares approach on a long-term phenology (29 years) of ‘Picholine Marocaine’ cultivar, we showed that the relevance of delineating the chilling and forcing periods depends more on the variability of inter-annual temperatures than on the long-term datasets. In fact, chilling and forcing periods are similar between those delineated by using datasets of 29 years and those of only 6 years (2014–2019). We demonstrated that the variability of inter-annual temperatures is the main factor explaining this pattern. We then used the datasets of six years to assess the chill and heat requirements of 285 cultivars. We classified Mediterranean olive cultivars into four groups according to their chill requirements. Our results, using the Kriging interpolation method, indicated that flowering dates of most of these cultivars (92%) were governed by both chilling and forcing temperatures. Our investigations provided first insights to select adapted cultivars to global warming.
ISSN:2073-4395