Brown preadipocyte transplantation locally ameliorates obesity

Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose an...

Full description

Bibliographic Details
Main Authors: Kento Takaya, Naruhito Matsuda, Toru Asou, Kazuo Kishi
Format: Article
Language:English
Published: Thieme Medical Publishers, Inc. 2021-07-01
Series:Archives of Plastic Surgery
Subjects:
Online Access:http://www.thieme-connect.de/DOI/DOI?10.5999/aps.2020.02257
Description
Summary:Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose and fatty acid metabolism. However, since BAT transplantation leads to whole-body weight loss, we speculated that earlier approaches cause a generalized and unnecessary fat tissue loss, including in breast and hip tissues. Methods We transplanted white adipose tissue-derived or BAT-derived preadipocytes prepared from C57BL/6 mice into one side of the inguinal fat pads of an obese mouse model (db/db mice) to examine whether it would cause fat loss at the peri-transplant site (n=5 each). The same volume of phosphate-buffered saline was injected as a control on the other side. Six weeks after transplantation, the inguinal fat pad was excised and weighed. We also measured the concentrations of glucose, triglycerides, fatty acids, and total cholesterol in the peripheral blood. Results BAT-derived preadipocytes showed abundant mitochondria and high levels of mitochondrial membrane uncoupling protein 1 expression, both in vivo and in vitro, with a remarkable reduction in weight of the inguinal fat pad after transplantation (0.17±0.12 g, P=0.043). Only free fatty acid levels tended to decrease in the BAT-transplanted group, but the difference was not significant (P=0.11). Conclusions Our results suggest that brown adipocytes drive fat degradation around the transplantation site. Thus, local transplantation of BAT-derived preadipocytes may be useful for treating obesity, as well as in cosmetic treatments.
ISSN:2234-6163
2234-6171