Receptor kinase FERONIA regulates flowering time in Arabidopsis

Abstract Background The receptor-like kinase FEROINA (FER) plays a crucial role in controlling plant vegetative growth partially by sensing the rapid alkalinization factor (RALF) peptide. However, the role of RALF1-FER in the vegetative-reproductive growth transition remains unknown. Here, we analyz...

Full description

Bibliographic Details
Main Authors: Long Wang, Tao Yang, Qinlu Lin, Bingqian Wang, Xu Li, Sheng Luan, Feng Yu
Format: Article
Language:English
Published: BMC 2020-01-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-019-2223-y
Description
Summary:Abstract Background The receptor-like kinase FEROINA (FER) plays a crucial role in controlling plant vegetative growth partially by sensing the rapid alkalinization factor (RALF) peptide. However, the role of RALF1-FER in the vegetative-reproductive growth transition remains unknown. Here, we analyze the mechanism through which FER affects the flowering time in Arabidopsis. Results We found that the FER mRNA levels exhibit an oscillating pattern with a diurnal rhythm and that the clock oscillator CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) up-regulates the expression of FER by associating with its chromatin. In addition, FER expression is regulated by clock genes, and FER also modulates the expression patterns of clock genes. Consistent with its gene expression pattern, FER positively regulates flowering by modulating the transcript accumulation and mRNA alternative splicing of certain flowering-related genes, including FLOWERING LOCUS C (FLC) and its homolog MADS AFFECTING FLOWERING (MAF). However, the RALF1 ligand negatively regulates flowering compared with FER. Conclusions We found that FER, which is up-regulated by CCA1, controls the flowering time by regulating the transcript accumulation and mRNA alternative splicing (AS) of some important flowering genes, and these findings link FER to the floral transition.
ISSN:1471-2229