Epileptic Seizure Prediction With Multi-View Convolutional Neural Networks

The unpredictability of seizures is often considered by patients to be the most problematic aspect of epilepsy, so this work aims to develop an accurate epilepsy seizure predictor, making it possible to enable devices to warn patients of impeding seizures. To develop a model for seizure prediction,...

Full description

Bibliographic Details
Main Authors: Chien-Liang Liu, Bin Xiao, Wen-Hoar Hsaio, Vincent S. Tseng
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8910555/
Description
Summary:The unpredictability of seizures is often considered by patients to be the most problematic aspect of epilepsy, so this work aims to develop an accurate epilepsy seizure predictor, making it possible to enable devices to warn patients of impeding seizures. To develop a model for seizure prediction, most studies relied on Electroencephalograms (EEGs) to capture physiological measurements of epilepsy. This work uses the two domains of EEGs, including frequency domain and time domain, to provide two different views for the same data source. Subsequently, this work proposes a multi-view convolutional neural network framework to predict the occurrence of epilepsy seizures with the goal of acquiring a shared representation of time-domain and frequency-domain features. By conducting experiments on Kaggle data set, we demonstrated that the proposed method outperforms all methods listed in the Kaggle leader board. Additionally, our proposed model achieves average area under the curve (AUCs) of 0.82 and 0.89 on two subjects of CHB-MIT scalp EEG data set. This work serves as an effective paradigm for applying deep learning approaches to the crucial topic of risk prediction in health domains.
ISSN:2169-3536