Neutron Imaging and Learning Algorithms: New Perspectives in Cultural Heritage Applications
Recently, learning algorithms such as Convolutional Neural Networks have been successfully applied in different stages of data processing from the acquisition to the data analysis in the imaging context. The aim of these algorithms is the dimensionality of data reduction and the computational effort...
Główni autorzy: | Claudia Scatigno, Giulia Festa |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2022-10-01
|
Seria: | Journal of Imaging |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/2313-433X/8/10/284 |
Podobne zapisy
-
A Visual Attentive Model for Discovering Patterns in Eye-Tracking Data—A Proposal in Cultural Heritage
od: Roberto Pierdicca, i wsp.
Wydane: (2020-04-01) -
Populating the Data Space for Cultural Heritage with Heritage Digital Twins
od: Franco Niccolucci, i wsp.
Wydane: (2022-07-01) -
Embedded Deep Learning to Improve the Performance of Approaches for Extinct Heritage Images Denoising
od: Alaa HamzaOmran, i wsp.
Wydane: (2024-08-01) -
The European Perspective on the Digitization of Cultural Heritage
od: Grigore-Teodor Samoila, i wsp.
Wydane: (2024-04-01) -
Auto-Colorization of Historical Images Using Deep Convolutional Neural Networks
od: Madhab Raj Joshi, i wsp.
Wydane: (2020-12-01)