Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses

<p>Abstract</p> <p>Background</p> <p>Horizontal gene transfer (HGT) played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA...

Full description

Bibliographic Details
Main Authors: Gogarten J Peter, Zhaxybayeva Olga
Format: Article
Language:English
Published: BMC 2002-02-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/3/4
_version_ 1818791900157575168
author Gogarten J Peter
Zhaxybayeva Olga
author_facet Gogarten J Peter
Zhaxybayeva Olga
author_sort Gogarten J Peter
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Horizontal gene transfer (HGT) played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA encoding genes. Here we describe tools that provide an assessment and graphic illustration of the mosaic nature of microbial genomes.</p> <p>Results</p> <p>We adapted the Maximum Likelihood (ML) mapping to the analyses of all detected quartets of orthologous genes found in four genomes. We have automated the assembly and analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The latter two approaches appear to be more conservative than the ML-mapping approach, but qualitatively all three approaches give equivalent results. All three tools were tested on mitochondrial genomes, which presumably were inherited as a single linkage group.</p> <p>Conclusions</p> <p>In some instances of interphylum relationships we find nearly equal numbers of quartets strongly supporting the three possible topologies. In contrast, our analyses of genome quartets containing the cyanobacterium <it>Synechocystis</it> sp. indicate that a large part of the cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been suggested as sister groups to the cyanobacteria contain many fewer genes that group with the <it>Synechocystis</it> orthologs. Interdomain comparisons of genome quartets containing the archaeon <it>Halobacterium</it> sp. revealed that <it>Halobacterium</it> sp. shares more genes with Bacteria that live in the same environment than with Bacteria that are more closely related based on rRNA phylogeny . Many of these genes encode proteins involved in substrate transport and metabolism and in information storage and processing. The performed analyses demonstrate that relationships among prokaryotes cannot be accurately depicted by or inferred from the tree-like evolution of a core of rarely transferred genes; rather prokaryotic genomes are mosaics in which different parts have different evolutionary histories. Probability mapping is a valuable tool to explore the mosaic nature of genomes.</p>
first_indexed 2024-12-18T15:18:42Z
format Article
id doaj.art-980fbd7b705e493ea5bd264c13c8d1de
institution Directory Open Access Journal
issn 1471-2164
language English
last_indexed 2024-12-18T15:18:42Z
publishDate 2002-02-01
publisher BMC
record_format Article
series BMC Genomics
spelling doaj.art-980fbd7b705e493ea5bd264c13c8d1de2022-12-21T21:03:28ZengBMCBMC Genomics1471-21642002-02-0131410.1186/1471-2164-3-4Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analysesGogarten J PeterZhaxybayeva Olga<p>Abstract</p> <p>Background</p> <p>Horizontal gene transfer (HGT) played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA encoding genes. Here we describe tools that provide an assessment and graphic illustration of the mosaic nature of microbial genomes.</p> <p>Results</p> <p>We adapted the Maximum Likelihood (ML) mapping to the analyses of all detected quartets of orthologous genes found in four genomes. We have automated the assembly and analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The latter two approaches appear to be more conservative than the ML-mapping approach, but qualitatively all three approaches give equivalent results. All three tools were tested on mitochondrial genomes, which presumably were inherited as a single linkage group.</p> <p>Conclusions</p> <p>In some instances of interphylum relationships we find nearly equal numbers of quartets strongly supporting the three possible topologies. In contrast, our analyses of genome quartets containing the cyanobacterium <it>Synechocystis</it> sp. indicate that a large part of the cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been suggested as sister groups to the cyanobacteria contain many fewer genes that group with the <it>Synechocystis</it> orthologs. Interdomain comparisons of genome quartets containing the archaeon <it>Halobacterium</it> sp. revealed that <it>Halobacterium</it> sp. shares more genes with Bacteria that live in the same environment than with Bacteria that are more closely related based on rRNA phylogeny . Many of these genes encode proteins involved in substrate transport and metabolism and in information storage and processing. The performed analyses demonstrate that relationships among prokaryotes cannot be accurately depicted by or inferred from the tree-like evolution of a core of rarely transferred genes; rather prokaryotic genomes are mosaics in which different parts have different evolutionary histories. Probability mapping is a valuable tool to explore the mosaic nature of genomes.</p>http://www.biomedcentral.com/1471-2164/3/4
spellingShingle Gogarten J Peter
Zhaxybayeva Olga
Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
BMC Genomics
title Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
title_full Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
title_fullStr Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
title_full_unstemmed Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
title_short Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses
title_sort bootstrap bayesian probability and maximum likelihood mapping exploring new tools for comparative genome analyses
url http://www.biomedcentral.com/1471-2164/3/4
work_keys_str_mv AT gogartenjpeter bootstrapbayesianprobabilityandmaximumlikelihoodmappingexploringnewtoolsforcomparativegenomeanalyses
AT zhaxybayevaolga bootstrapbayesianprobabilityandmaximumlikelihoodmappingexploringnewtoolsforcomparativegenomeanalyses