Summary: | In the words of Heinrich Hertz in 1885, the Earth is a “gigantic steam engine”. On average, of the planet’s cross section exposed to sunlight, 72 % belong to the global ocean. With a delay of only 2-3 months, most of the heat absorbed there is released by evaporation rather than by thermal radiation. Water vapour is the dominating “greenhouse gas” of the marine troposphere with a typical relative humidity (RH) of 80 % at the surface. Observing the heat transport across the ocean surface permits insight in the powerhouse of the “steam engine”, controlled by the RH at the surface, a quantity that is often considered the “Cinderella” among the climate data. RH of the troposphere also controls cloud formation that is equally fundamental as challenging for climate research. As a precise and perfectly consistent thermodynamic basis for the description of such processes, the new oceanographic standard TEOS-10 was introduced by UNESCO/IOC in 2010 and IUGG in 2011. Its equations cover all thermodynamic properties of liquid water, seawater, ice and humid air, as well as their mutual equilibria and phase transitions. For harmonisation of the inconsistent RH definitions of humid air between meteorology and climatology, the relative fugacity has been defined as a physically more reasonable RH substitute that does not rely on the approximation of ideal gases.
Doi: 10.28991/HEF-2021-02-02-06
Full Text: PDF
|