Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying th...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-06-01
|
Series: | Frontiers in Molecular Biosciences |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/full |
_version_ | 1797814356792049664 |
---|---|
author | Katelin M. Allan Katelin M. Allan Katelin M. Allan Miro A. Astore Egi Kardia Egi Kardia Egi Kardia Sharon L. Wong Sharon L. Wong Sharon L. Wong Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Jessica L. Bell Jessica L. Bell Simone Visser Po-Chia Chen Renate Griffith Adam Jaffe Adam Jaffe Adam Jaffe Sheila Sivam Orazio Vittorio Orazio Vittorio Serdar Kuyucak Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters |
author_facet | Katelin M. Allan Katelin M. Allan Katelin M. Allan Miro A. Astore Egi Kardia Egi Kardia Egi Kardia Sharon L. Wong Sharon L. Wong Sharon L. Wong Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Jessica L. Bell Jessica L. Bell Simone Visser Po-Chia Chen Renate Griffith Adam Jaffe Adam Jaffe Adam Jaffe Sheila Sivam Orazio Vittorio Orazio Vittorio Serdar Kuyucak Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters |
author_sort | Katelin M. Allan |
collection | DOAJ |
description | Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown.Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot.Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual’s clinical evaluation as a non-responder to ETI.Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes. |
first_indexed | 2024-03-13T08:06:30Z |
format | Article |
id | doaj.art-983bc3fd05834594ba1500ce3059b03f |
institution | Directory Open Access Journal |
issn | 2296-889X |
language | English |
last_indexed | 2024-03-13T08:06:30Z |
publishDate | 2023-06-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Molecular Biosciences |
spelling | doaj.art-983bc3fd05834594ba1500ce3059b03f2023-06-01T04:42:15ZengFrontiers Media S.A.Frontiers in Molecular Biosciences2296-889X2023-06-011010.3389/fmolb.2023.11485011148501Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patientKatelin M. Allan0Katelin M. Allan1Katelin M. Allan2Miro A. Astore3Egi Kardia4Egi Kardia5Egi Kardia6Sharon L. Wong7Sharon L. Wong8Sharon L. Wong9Laura K. Fawcett10Laura K. Fawcett11Laura K. Fawcett12Laura K. Fawcett13Jessica L. Bell14Jessica L. Bell15Simone Visser16Po-Chia Chen17Renate Griffith18Adam Jaffe19Adam Jaffe20Adam Jaffe21Sheila Sivam22Orazio Vittorio23Orazio Vittorio24Serdar Kuyucak25Shafagh A. Waters26Shafagh A. Waters27Shafagh A. Waters28Shafagh A. Waters29School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaChildren’s Cancer Institute, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaChildren’s Cancer Institute, UNSW Sydney, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaBackground: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown.Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot.Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual’s clinical evaluation as a non-responder to ETI.Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/fullcystic fibrosisCFTRmodulatorsairway epithelial cell modelspersonalized medicinemolecular dynamics |
spellingShingle | Katelin M. Allan Katelin M. Allan Katelin M. Allan Miro A. Astore Egi Kardia Egi Kardia Egi Kardia Sharon L. Wong Sharon L. Wong Sharon L. Wong Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Laura K. Fawcett Jessica L. Bell Jessica L. Bell Simone Visser Po-Chia Chen Renate Griffith Adam Jaffe Adam Jaffe Adam Jaffe Sheila Sivam Orazio Vittorio Orazio Vittorio Serdar Kuyucak Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters Shafagh A. Waters Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient Frontiers in Molecular Biosciences cystic fibrosis CFTR modulators airway epithelial cell models personalized medicine molecular dynamics |
title | Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient |
title_full | Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient |
title_fullStr | Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient |
title_full_unstemmed | Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient |
title_short | Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient |
title_sort | q1291h cftr molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor tezacaftor ivacaftor in a q1291h f508del patient |
topic | cystic fibrosis CFTR modulators airway epithelial cell models personalized medicine molecular dynamics |
url | https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/full |
work_keys_str_mv | AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT miroaastore q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT jessicalbell q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT jessicalbell q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT simonevisser q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT pochiachen q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT renategriffith q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT sheilasivam q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT oraziovittorio q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT oraziovittorio q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT serdarkuyucak q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient |