Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying th...

Full description

Bibliographic Details
Main Authors: Katelin M. Allan, Miro A. Astore, Egi Kardia, Sharon L. Wong, Laura K. Fawcett, Jessica L. Bell, Simone Visser, Po-Chia Chen, Renate Griffith, Adam Jaffe, Sheila Sivam, Orazio Vittorio, Serdar Kuyucak, Shafagh A. Waters
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-06-01
Series:Frontiers in Molecular Biosciences
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/full
_version_ 1797814356792049664
author Katelin M. Allan
Katelin M. Allan
Katelin M. Allan
Miro A. Astore
Egi Kardia
Egi Kardia
Egi Kardia
Sharon L. Wong
Sharon L. Wong
Sharon L. Wong
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Jessica L. Bell
Jessica L. Bell
Simone Visser
Po-Chia Chen
Renate Griffith
Adam Jaffe
Adam Jaffe
Adam Jaffe
Sheila Sivam
Orazio Vittorio
Orazio Vittorio
Serdar Kuyucak
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
author_facet Katelin M. Allan
Katelin M. Allan
Katelin M. Allan
Miro A. Astore
Egi Kardia
Egi Kardia
Egi Kardia
Sharon L. Wong
Sharon L. Wong
Sharon L. Wong
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Jessica L. Bell
Jessica L. Bell
Simone Visser
Po-Chia Chen
Renate Griffith
Adam Jaffe
Adam Jaffe
Adam Jaffe
Sheila Sivam
Orazio Vittorio
Orazio Vittorio
Serdar Kuyucak
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
author_sort Katelin M. Allan
collection DOAJ
description Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown.Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot.Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual’s clinical evaluation as a non-responder to ETI.Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
first_indexed 2024-03-13T08:06:30Z
format Article
id doaj.art-983bc3fd05834594ba1500ce3059b03f
institution Directory Open Access Journal
issn 2296-889X
language English
last_indexed 2024-03-13T08:06:30Z
publishDate 2023-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Molecular Biosciences
spelling doaj.art-983bc3fd05834594ba1500ce3059b03f2023-06-01T04:42:15ZengFrontiers Media S.A.Frontiers in Molecular Biosciences2296-889X2023-06-011010.3389/fmolb.2023.11485011148501Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patientKatelin M. Allan0Katelin M. Allan1Katelin M. Allan2Miro A. Astore3Egi Kardia4Egi Kardia5Egi Kardia6Sharon L. Wong7Sharon L. Wong8Sharon L. Wong9Laura K. Fawcett10Laura K. Fawcett11Laura K. Fawcett12Laura K. Fawcett13Jessica L. Bell14Jessica L. Bell15Simone Visser16Po-Chia Chen17Renate Griffith18Adam Jaffe19Adam Jaffe20Adam Jaffe21Sheila Sivam22Orazio Vittorio23Orazio Vittorio24Serdar Kuyucak25Shafagh A. Waters26Shafagh A. Waters27Shafagh A. Waters28Shafagh A. Waters29School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaChildren’s Cancer Institute, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaChildren’s Cancer Institute, UNSW Sydney, Sydney, NSW, AustraliaSchool of Physics, The University of Sydney, Sydney, NSW, AustraliaSchool of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaMolecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, AustraliaSchool of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, AustraliaDepartment of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, AustraliaBackground: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown.Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot.Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual’s clinical evaluation as a non-responder to ETI.Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/fullcystic fibrosisCFTRmodulatorsairway epithelial cell modelspersonalized medicinemolecular dynamics
spellingShingle Katelin M. Allan
Katelin M. Allan
Katelin M. Allan
Miro A. Astore
Egi Kardia
Egi Kardia
Egi Kardia
Sharon L. Wong
Sharon L. Wong
Sharon L. Wong
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Laura K. Fawcett
Jessica L. Bell
Jessica L. Bell
Simone Visser
Po-Chia Chen
Renate Griffith
Adam Jaffe
Adam Jaffe
Adam Jaffe
Sheila Sivam
Orazio Vittorio
Orazio Vittorio
Serdar Kuyucak
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
Shafagh A. Waters
Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
Frontiers in Molecular Biosciences
cystic fibrosis
CFTR
modulators
airway epithelial cell models
personalized medicine
molecular dynamics
title Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
title_full Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
title_fullStr Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
title_full_unstemmed Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
title_short Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient
title_sort q1291h cftr molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor tezacaftor ivacaftor in a q1291h f508del patient
topic cystic fibrosis
CFTR
modulators
airway epithelial cell models
personalized medicine
molecular dynamics
url https://www.frontiersin.org/articles/10.3389/fmolb.2023.1148501/full
work_keys_str_mv AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT katelinmallan q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT miroaastore q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT egikardia q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT sharonlwong q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT laurakfawcett q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT jessicalbell q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT jessicalbell q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT simonevisser q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT pochiachen q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT renategriffith q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT adamjaffe q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT sheilasivam q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT oraziovittorio q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT oraziovittorio q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT serdarkuyucak q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient
AT shafaghawaters q1291hcftrmoleculardynamicssimulationsandexvivotheratypinginnasalepithelialmodelsandclinicalresponsetoelexacaftortezacaftorivacaftorinaq1291hf508delpatient