Applications of Wirtinger Inequalities on the Distribution of Zeros of the Riemann Zeta-Function

<p/> <p>On the hypothesis that the <inline-formula> <graphic file="1029-242X-2010-215416-i1.gif"/></inline-formula>th moments of the Hardy <inline-formula> <graphic file="1029-242X-2010-215416-i2.gif"/></inline-formula>-function are...

Full description

Bibliographic Details
Main Author: Saker SamirH
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/215416
Description
Summary:<p/> <p>On the hypothesis that the <inline-formula> <graphic file="1029-242X-2010-215416-i1.gif"/></inline-formula>th moments of the Hardy <inline-formula> <graphic file="1029-242X-2010-215416-i2.gif"/></inline-formula>-function are correctly predicted by random matrix theory and the moments of the derivative of <inline-formula> <graphic file="1029-242X-2010-215416-i3.gif"/></inline-formula> are correctly predicted by the derivative of the characteristic polynomials of unitary matrices, we establish new large spaces between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities. In particular, it is obtained that <inline-formula> <graphic file="1029-242X-2010-215416-i4.gif"/></inline-formula> which means that consecutive nontrivial zeros often differ by at least 6.1392 times the average spacing.</p>
ISSN:1025-5834
1029-242X