GC/MS Analysis, Antioxidant Activity, and Antimicrobial Effect of <i>Pelargonium peltatum</i> (Geraniaceae)

In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as <i&...

Full description

Bibliographic Details
Main Authors: Alan-Misael Alonso, Oscar Kevin Reyes-Maldonado, Ana María Puebla-Pérez, Martha Patricia Gallegos Arreola, Sandra Fabiola Velasco-Ramírez, Victor Zúñiga-Mayo, Rosa E. Sánchez-Fernández, Jorge-Iván Delgado-Saucedo, Gilberto Velázquez-Juárez
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/11/3436
Description
Summary:In recent years, the increase in antibiotic resistance demands searching for new compounds with antimicrobial activity. Phytochemicals found in plants offer an alternative to this problem. The genus Pelargonium contains several species; some have commercial use in traditional medicine such as <i>P. sinoides</i>, and others such as <i>P. peltatum</i> are little studied but have promising potential for various applications such as phytopharmaceuticals. In this work, we characterized the freeze-dried extracts (FDEs) of five tissues (root, stem, leaf, and two types of flowers) and the ethyl acetate fractions from leaf (Lf-EtOAc) and flower (Fwr-EtOAc) of <i>P. peltatum</i> through the analysis by thin-layer chromatography (T.L.C.), gas chromatography coupled to mass spectrometry (GC-MS), phytochemicals quantification, antioxidant capacity, and antimicrobial activity. After the first round of analysis, it was observed that the FDE-Leaf and FDE-Flower showed higher antioxidant and antimicrobial activities compared to the other FDEs, for which FDE-Leaf and FDE-Flower were fractionated and analyzed in a second round. The antioxidant activity determined by ABTS showed that Lf-EtOAc and Fwr-EtOAc had the lowest IC<sub>50</sub> values with 27.15 ± 1.04 and 28.11 ± 1.3 µg/mL, respectively. The content of total polyphenols was 264.57 ± 7.73 for Lf-EtOAc and 105.39 ± 4.04 mg G.A./g FDE for Fwr-EtOAc. Regarding the content of flavonoid, Lf-EtOAc and Fw-EtOAc had the highest concentration with 34.4 ± 1.06 and 29.45 ± 1.09 mg Q.E./g FDE. In addition, the minimum inhibitory concentration (M.I.C.) of antimicrobial activity was evaluated: Lf-EtOAc and Fwr-EtOAc were effective at 31.2 µg/mL for <i>Staphylococcus aureus</i> and 62.5 µg/mL for <i>Salmonella enterica</i>, while for the <i>Enterococcus feacalis</i> strain, Fwr-EtOAc presented 31.2 µg/mL of M.I.C. According to the GC-MS analysis, the main compounds were 1,2,3-Benzenetriol (Pyrogallol), with 77.38% of relative abundance in the Lf-EtOAc and 71.24% in the Fwr-EtOAc, followed by ethyl gallate (13.10%) in the Fwr-EtOAc and (Z)-9-Octadecenamide (13.63% and 6.75%) in both Lf-EtOAc and Fwr-EtOAc, respectively.
ISSN:1420-3049