Global convergence of the Armijo epsilon steepest descent algorithm

In this article, we study the unconstrained minimization problem\[(P)\,\,\,\min\left\{ f(x):x\in\mathbb{R}^{n}\right\} .\]where \(f:\mathbb{R}^{n}\rightarrow\mathbb{R}\) is a continuously differentiable function. We introduce a new algorithm which accelerates the convergence of the steepest descent...

Full description

Bibliographic Details
Main Authors: Nour E. Rahali, Nacera Djeghaba, Rachid Benzine
Format: Article
Language:English
Published: Publishing House of the Romanian Academy 2012-08-01
Series:Journal of Numerical Analysis and Approximation Theory
Subjects:
Online Access:https://www.ictp.acad.ro/jnaat/journal/article/view/978
_version_ 1818520933064769536
author Nour E. Rahali
Nacera Djeghaba
Rachid Benzine
author_facet Nour E. Rahali
Nacera Djeghaba
Rachid Benzine
author_sort Nour E. Rahali
collection DOAJ
description In this article, we study the unconstrained minimization problem\[(P)\,\,\,\min\left\{ f(x):x\in\mathbb{R}^{n}\right\} .\]where \(f:\mathbb{R}^{n}\rightarrow\mathbb{R}\) is a continuously differentiable function. We introduce a new algorithm which accelerates the convergence of the steepest descent method. We further establish the global convergence of this algorithm in the case of Armijo inexact line search.
first_indexed 2024-12-11T01:44:16Z
format Article
id doaj.art-985e5dbd03f54c03b46205537bd91340
institution Directory Open Access Journal
issn 2457-6794
2501-059X
language English
last_indexed 2024-12-11T01:44:16Z
publishDate 2012-08-01
publisher Publishing House of the Romanian Academy
record_format Article
series Journal of Numerical Analysis and Approximation Theory
spelling doaj.art-985e5dbd03f54c03b46205537bd913402022-12-22T01:24:56ZengPublishing House of the Romanian AcademyJournal of Numerical Analysis and Approximation Theory2457-67942501-059X2012-08-01412Global convergence of the Armijo epsilon steepest descent algorithmNour E. Rahali0Nacera Djeghaba1Rachid Benzine2Souk Ahras UniversityBadji Mokhtar UniversityBadji Mokhtar UniversityIn this article, we study the unconstrained minimization problem\[(P)\,\,\,\min\left\{ f(x):x\in\mathbb{R}^{n}\right\} .\]where \(f:\mathbb{R}^{n}\rightarrow\mathbb{R}\) is a continuously differentiable function. We introduce a new algorithm which accelerates the convergence of the steepest descent method. We further establish the global convergence of this algorithm in the case of Armijo inexact line search.https://www.ictp.acad.ro/jnaat/journal/article/view/978unconstrained optimizationglobal convergencesteepest descent algorithm\( \varepsilon\)-algorithmArmijo inexact line search
spellingShingle Nour E. Rahali
Nacera Djeghaba
Rachid Benzine
Global convergence of the Armijo epsilon steepest descent algorithm
Journal of Numerical Analysis and Approximation Theory
unconstrained optimization
global convergence
steepest descent algorithm
\( \varepsilon\)-algorithm
Armijo inexact line search
title Global convergence of the Armijo epsilon steepest descent algorithm
title_full Global convergence of the Armijo epsilon steepest descent algorithm
title_fullStr Global convergence of the Armijo epsilon steepest descent algorithm
title_full_unstemmed Global convergence of the Armijo epsilon steepest descent algorithm
title_short Global convergence of the Armijo epsilon steepest descent algorithm
title_sort global convergence of the armijo epsilon steepest descent algorithm
topic unconstrained optimization
global convergence
steepest descent algorithm
\( \varepsilon\)-algorithm
Armijo inexact line search
url https://www.ictp.acad.ro/jnaat/journal/article/view/978
work_keys_str_mv AT nourerahali globalconvergenceofthearmijoepsilonsteepestdescentalgorithm
AT naceradjeghaba globalconvergenceofthearmijoepsilonsteepestdescentalgorithm
AT rachidbenzine globalconvergenceofthearmijoepsilonsteepestdescentalgorithm