Design and Working Parameter Optimization of Pneumatic Reciprocating Seedling-Picking Device of Automatic Transplanter

To improve the seedling-picking efficiency of the vegetable transplanter and reduce the damage rate of the seedling pot, a reciprocating seedling-picking device driven by full air pressure was designed. In this paper, the structure and working principle of the pneumatic seedling-picking device are i...

Full description

Bibliographic Details
Main Authors: Rencai Yue, Jianping Hu, Yijun Liu, Mengjiao Yao, Tengfei Zhang, Jiawei Shi
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/12/12/1989
Description
Summary:To improve the seedling-picking efficiency of the vegetable transplanter and reduce the damage rate of the seedling pot, a reciprocating seedling-picking device driven by full air pressure was designed. In this paper, the structure and working principle of the pneumatic seedling-picking device are introduced. Through the mechanical analysis between the seedling-picking claw and the seedling pot, working parameters such as the stroke and driving force of the pneumatic seedling-picking claw clamping cylinder were determined. According to the action sequence of the seedling-picking mechanism, which is horizontally dispersed and longitudinally conveyed, the pneumatic control scheme of the seedling-picking and -dropping system was formulated. The simulation model for the control loop of the longitudinal cylinder was created with AMESim simulation software, and the simulation analysis was carried out. The Box–Behnken response surface design optimization method was used to determine the best operating parameters of the cylinder. The optimized peak value of shock vibration at the end of the cylinder was optimized from −65.64 mm·s<sup>−2</sup> to 35.41 mm·s<sup>−2</sup>, proving that the optimization of pneumatic working parameters has a positive effect on the success rate of seedling picking. The bench test of the seedling-picking mechanism was conducted on 72-hole plug seedlings with two picking frequencies of 120 plants·min<sup>−1</sup> and 144 plants·min<sup>−1</sup>, respectively, and the average seedling leakage rate, seedling damage rate, and seedling pot damage rate at different picking frequencies were counted. The experimental results show that under the two seedling-picking frequencies, the average success rate of seedling picking and throwing after optimization is increased from 96.4% and 92.4% to 97.9% and 95.3%, respectively. This is in line with the requirements of high-speed seedling picking and confirms the rationality of the seedling-picking mechanism design.
ISSN:2077-0472