Polynomial Mendelian randomization reveals non-linear causal effects for obesity-related traits

Causal inference is a critical step in improving our understanding of biological processes, and Mendelian randomization (MR) has emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from biobanks. Although many extensions have bee...

詳細記述

書誌詳細
主要な著者: Jonathan Sulc, Jennifer Sjaarda, Zoltán Kutalik
フォーマット: 論文
言語:English
出版事項: Elsevier 2022-07-01
シリーズ:HGG Advances
主題:
オンライン・アクセス:http://www.sciencedirect.com/science/article/pii/S2666247722000409