Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow

Rotor-stator cavities are often found in turbomachinery; they supply cold air that is bled from the compressor to the turbine blades. The pressure of the outlet of a rotor-stator cavity is axisymmetric under normal circumstances. However, its pressure would be non-axisymmetric in the event of blade...

Full description

Bibliographic Details
Main Authors: Gang Zhao, Tian Qiu, Peng Liu
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/9/2/106
_version_ 1797483877159141376
author Gang Zhao
Tian Qiu
Peng Liu
author_facet Gang Zhao
Tian Qiu
Peng Liu
author_sort Gang Zhao
collection DOAJ
description Rotor-stator cavities are often found in turbomachinery; they supply cold air that is bled from the compressor to the turbine blades. The pressure of the outlet of a rotor-stator cavity is axisymmetric under normal circumstances. However, its pressure would be non-axisymmetric in the event of blade fracture. The impact of blade fracture on a rotor-stator cavity with centrifugal superposed flow is studied in this paper. The Euler number <i>E</i>, the rotational Reynolds number <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula>, and the low-pressure zone range <i>θ</i> are investigated and, for the first time, with the non-axisymmetrical boundary conditions employing numerical simulation. The results of the numerical calculations show that after turbine blade fracture, the velocity is more affected in the downstream region at a high radius, especially when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> is large. As for the distribution of the mass flow rate, there may be a critical <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> at which the other blades are least affected. The <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> would increase as the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> or the <i>E</i> increase, and the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub><mo>≅</mo><mn>0.2</mn></mrow></semantics></math></inline-formula> when <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>w</mi></msub><mo>=</mo><mn>10</mn><mo>,</mo><mn>137</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub><mo>=</mo><mn>5.12</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.2</mn><mo>≤</mo><mi>E</mi><mo>≤</mo><mn>0.4</mn></mrow></semantics></math></inline-formula>. In addition, the thrust coefficient increases as the <i>E</i> or the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>θ</mi></semantics></math></inline-formula> increases, and the increase in the thrust coefficient does not exceed 4% when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><mn>0.2</mn><mo> </mo><mrow><mi>and</mi><mo> </mo><mi>the</mi></mrow><mo> </mo><mi>θ</mi><mo>=</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> in this paper. However, the moment coefficient on the rotating shaft is almost independent of the <i>E</i> and the <i>θ</i>. An increase in the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> will reduce the effect of turbine blade fracture on the thrust and moment coefficients, when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> is small.
first_indexed 2024-03-09T22:54:22Z
format Article
id doaj.art-9898e95f1537457d933e8f69f54e86e5
institution Directory Open Access Journal
issn 2226-4310
language English
last_indexed 2024-03-09T22:54:22Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Aerospace
spelling doaj.art-9898e95f1537457d933e8f69f54e86e52023-11-23T18:14:48ZengMDPI AGAerospace2226-43102022-02-019210610.3390/aerospace9020106Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed FlowGang Zhao0Tian Qiu1Peng Liu2School of Energy and Power Engineering, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, ChinaResearch Institute of Aero-Engine, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, ChinaResearch Institute of Aero-Engine, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, ChinaRotor-stator cavities are often found in turbomachinery; they supply cold air that is bled from the compressor to the turbine blades. The pressure of the outlet of a rotor-stator cavity is axisymmetric under normal circumstances. However, its pressure would be non-axisymmetric in the event of blade fracture. The impact of blade fracture on a rotor-stator cavity with centrifugal superposed flow is studied in this paper. The Euler number <i>E</i>, the rotational Reynolds number <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula>, and the low-pressure zone range <i>θ</i> are investigated and, for the first time, with the non-axisymmetrical boundary conditions employing numerical simulation. The results of the numerical calculations show that after turbine blade fracture, the velocity is more affected in the downstream region at a high radius, especially when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> is large. As for the distribution of the mass flow rate, there may be a critical <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> at which the other blades are least affected. The <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> would increase as the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> or the <i>E</i> increase, and the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>c</mi></msub><mo>≅</mo><mn>0.2</mn></mrow></semantics></math></inline-formula> when <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>w</mi></msub><mo>=</mo><mn>10</mn><mo>,</mo><mn>137</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub><mo>=</mo><mn>5.12</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.2</mn><mo>≤</mo><mi>E</mi><mo>≤</mo><mn>0.4</mn></mrow></semantics></math></inline-formula>. In addition, the thrust coefficient increases as the <i>E</i> or the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>θ</mi></semantics></math></inline-formula> increases, and the increase in the thrust coefficient does not exceed 4% when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><mn>0.2</mn><mo> </mo><mrow><mi>and</mi><mo> </mo><mi>the</mi></mrow><mo> </mo><mi>θ</mi><mo>=</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> in this paper. However, the moment coefficient on the rotating shaft is almost independent of the <i>E</i> and the <i>θ</i>. An increase in the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> will reduce the effect of turbine blade fracture on the thrust and moment coefficients, when the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>φ</mi></msub></mrow></semantics></math></inline-formula> is small.https://www.mdpi.com/2226-4310/9/2/106rotor-stator systemnon-axisymmetric boundary conditionsnumerical simulationturbine blade fracture
spellingShingle Gang Zhao
Tian Qiu
Peng Liu
Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
Aerospace
rotor-stator system
non-axisymmetric boundary conditions
numerical simulation
turbine blade fracture
title Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
title_full Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
title_fullStr Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
title_full_unstemmed Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
title_short Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow
title_sort influence of blade fracture on the flow of rotor stator systems with centrifugal superposed flow
topic rotor-stator system
non-axisymmetric boundary conditions
numerical simulation
turbine blade fracture
url https://www.mdpi.com/2226-4310/9/2/106
work_keys_str_mv AT gangzhao influenceofbladefractureontheflowofrotorstatorsystemswithcentrifugalsuperposedflow
AT tianqiu influenceofbladefractureontheflowofrotorstatorsystemswithcentrifugalsuperposedflow
AT pengliu influenceofbladefractureontheflowofrotorstatorsystemswithcentrifugalsuperposedflow