On a power-type coupled system with mean curvature operator in Minkowski space

Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{i...

Full description

Bibliographic Details
Main Authors: Zhiqian He, Yanzhong Zhao, Liangying Miao
Format: Article
Language:English
Published: SpringerOpen 2021-11-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-021-01572-z
_version_ 1818928391603093504
author Zhiqian He
Yanzhong Zhao
Liangying Miao
author_facet Zhiqian He
Yanzhong Zhao
Liangying Miao
author_sort Zhiqian He
collection DOAJ
description Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ where M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ and B is a unit ball in R N ( N ≥ 2 ) $\mathbb{R}^{N} (N\geq 2)$ . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.
first_indexed 2024-12-20T03:28:10Z
format Article
id doaj.art-98a5f53631bd4b9e8eaa9e8004cb510e
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-20T03:28:10Z
publishDate 2021-11-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-98a5f53631bd4b9e8eaa9e8004cb510e2022-12-21T19:55:03ZengSpringerOpenBoundary Value Problems1687-27702021-11-01202111910.1186/s13661-021-01572-zOn a power-type coupled system with mean curvature operator in Minkowski spaceZhiqian He0Yanzhong Zhao1Liangying Miao2Department of Basic Teaching and Research, Qinghai UniversityDepartment of Basic Teaching and Research, Qinghai UniversitySchool of Mathematics and Statistics, Qinghai Nationalities UniversityAbstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ where M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ and B is a unit ball in R N ( N ≥ 2 ) $\mathbb{R}^{N} (N\geq 2)$ . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.https://doi.org/10.1186/s13661-021-01572-zMinkowski curvature operatorSystemPositive radial solutionUniqueness
spellingShingle Zhiqian He
Yanzhong Zhao
Liangying Miao
On a power-type coupled system with mean curvature operator in Minkowski space
Boundary Value Problems
Minkowski curvature operator
System
Positive radial solution
Uniqueness
title On a power-type coupled system with mean curvature operator in Minkowski space
title_full On a power-type coupled system with mean curvature operator in Minkowski space
title_fullStr On a power-type coupled system with mean curvature operator in Minkowski space
title_full_unstemmed On a power-type coupled system with mean curvature operator in Minkowski space
title_short On a power-type coupled system with mean curvature operator in Minkowski space
title_sort on a power type coupled system with mean curvature operator in minkowski space
topic Minkowski curvature operator
System
Positive radial solution
Uniqueness
url https://doi.org/10.1186/s13661-021-01572-z
work_keys_str_mv AT zhiqianhe onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace
AT yanzhongzhao onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace
AT liangyingmiao onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace