Novel Low-Loss Fiber-Chip Edge Coupler for Coupling Standard Single Mode Fibers to Silicon Photonic Wire Waveguides

Fiber-to-chip optical interconnects is a big challenge in silicon photonics application scenarios such as data centers and optical transmission systems. An edge coupler, compared to optical grating, is appealing to in the application of silicon photonics due to the high coupling efficiency between s...

Full description

Bibliographic Details
Main Authors: Siwei Sun, Ying Chen, Yu Sun, Fengman Liu, Liqiang Cao
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/3/79
Description
Summary:Fiber-to-chip optical interconnects is a big challenge in silicon photonics application scenarios such as data centers and optical transmission systems. An edge coupler, compared to optical grating, is appealing to in the application of silicon photonics due to the high coupling efficiency between standard optical fibers (SMF-28) and the sub-micron silicon wire waveguides. In this work, we proposed a novel fiber–chip edge coupler approach with a large mode size for silicon photonic wire waveguides. The edge coupler consists of a multiple structure which was fulfilled by multiple silicon nitride layers embedded in SiO<sub>2</sub> upper cladding, curved waveguides and two adiabatic spot size converter (SSC) sections. The multiple structure can allow light directly coupling from large mode size fiber-to-chip coupler, and then the curved waveguides and SSCs transmit the evanescent field to a 220 nm-thick silicon wire waveguide based on the silicon-on-insulator (SOI) platform. The edge coupler, designed for a standard SMF-28 fiber with 8.2 μm mode field diameter (MFD) at a wavelength of 1550 nm, exhibits a mode overlap efficiency exceeding 95% at the chip facet and the overall coupling exceeding 90%. The proposed edge coupler is fully compatible with standard microfabrication processes.
ISSN:2304-6732