On Opial-type inequality for a generalized fractional integral operator
This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2022-10-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.1515/dema-2022-0149 |
_version_ | 1811194167449092096 |
---|---|
author | Vivas-Cortez Miguel Martínez Francisco Valdes Juan E. Nápoles Hernández Jorge E. |
author_facet | Vivas-Cortez Miguel Martínez Francisco Valdes Juan E. Nápoles Hernández Jorge E. |
author_sort | Vivas-Cortez Miguel |
collection | DOAJ |
description | This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed in previous publications and the choice of the parameters involved, the established results in the work are obtained. In addition, some criteria are established to obtain the aforementioned inequalities based on other integral operators. Finally, a more generalized definition is suggested, with which interesting results can be obtained in the field of fractional integral inequalities. |
first_indexed | 2024-04-12T00:21:24Z |
format | Article |
id | doaj.art-98ad4cc366dd432a9301ca2210781764 |
institution | Directory Open Access Journal |
issn | 2391-4661 |
language | English |
last_indexed | 2024-04-12T00:21:24Z |
publishDate | 2022-10-01 |
publisher | De Gruyter |
record_format | Article |
series | Demonstratio Mathematica |
spelling | doaj.art-98ad4cc366dd432a9301ca22107817642022-12-22T03:55:42ZengDe GruyterDemonstratio Mathematica2391-46612022-10-0155169570910.1515/dema-2022-0149On Opial-type inequality for a generalized fractional integral operatorVivas-Cortez Miguel0Martínez Francisco1Valdes Juan E. Nápoles2Hernández Jorge E.3Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Naturales y Exactas, Escuela de Ciencias Físicas y Matemáticas, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, EcuadorDepartamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, EspañaUniversidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, ArgentinaDepartamento de Técnicas Cuantitativas, Universidad Centroccidental Lisandro Alvarado, Decanato de Ciencias Económicas y Empresariales, Barquisimeto, VenezuelaThis article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed in previous publications and the choice of the parameters involved, the established results in the work are obtained. In addition, some criteria are established to obtain the aforementioned inequalities based on other integral operators. Finally, a more generalized definition is suggested, with which interesting results can be obtained in the field of fractional integral inequalities.https://doi.org/10.1515/dema-2022-0149opial inequalityfractional integral operatorfractional calculus26d1026a33 |
spellingShingle | Vivas-Cortez Miguel Martínez Francisco Valdes Juan E. Nápoles Hernández Jorge E. On Opial-type inequality for a generalized fractional integral operator Demonstratio Mathematica opial inequality fractional integral operator fractional calculus 26d10 26a33 |
title | On Opial-type inequality for a generalized fractional integral operator |
title_full | On Opial-type inequality for a generalized fractional integral operator |
title_fullStr | On Opial-type inequality for a generalized fractional integral operator |
title_full_unstemmed | On Opial-type inequality for a generalized fractional integral operator |
title_short | On Opial-type inequality for a generalized fractional integral operator |
title_sort | on opial type inequality for a generalized fractional integral operator |
topic | opial inequality fractional integral operator fractional calculus 26d10 26a33 |
url | https://doi.org/10.1515/dema-2022-0149 |
work_keys_str_mv | AT vivascortezmiguel onopialtypeinequalityforageneralizedfractionalintegraloperator AT martinezfrancisco onopialtypeinequalityforageneralizedfractionalintegraloperator AT valdesjuanenapoles onopialtypeinequalityforageneralizedfractionalintegraloperator AT hernandezjorgee onopialtypeinequalityforageneralizedfractionalintegraloperator |