On Opial-type inequality for a generalized fractional integral operator

This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed...

Full description

Bibliographic Details
Main Authors: Vivas-Cortez Miguel, Martínez Francisco, Valdes Juan E. Nápoles, Hernández Jorge E.
Format: Article
Language:English
Published: De Gruyter 2022-10-01
Series:Demonstratio Mathematica
Subjects:
Online Access:https://doi.org/10.1515/dema-2022-0149
_version_ 1811194167449092096
author Vivas-Cortez Miguel
Martínez Francisco
Valdes Juan E. Nápoles
Hernández Jorge E.
author_facet Vivas-Cortez Miguel
Martínez Francisco
Valdes Juan E. Nápoles
Hernández Jorge E.
author_sort Vivas-Cortez Miguel
collection DOAJ
description This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed in previous publications and the choice of the parameters involved, the established results in the work are obtained. In addition, some criteria are established to obtain the aforementioned inequalities based on other integral operators. Finally, a more generalized definition is suggested, with which interesting results can be obtained in the field of fractional integral inequalities.
first_indexed 2024-04-12T00:21:24Z
format Article
id doaj.art-98ad4cc366dd432a9301ca2210781764
institution Directory Open Access Journal
issn 2391-4661
language English
last_indexed 2024-04-12T00:21:24Z
publishDate 2022-10-01
publisher De Gruyter
record_format Article
series Demonstratio Mathematica
spelling doaj.art-98ad4cc366dd432a9301ca22107817642022-12-22T03:55:42ZengDe GruyterDemonstratio Mathematica2391-46612022-10-0155169570910.1515/dema-2022-0149On Opial-type inequality for a generalized fractional integral operatorVivas-Cortez Miguel0Martínez Francisco1Valdes Juan E. Nápoles2Hernández Jorge E.3Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Naturales y Exactas, Escuela de Ciencias Físicas y Matemáticas, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, EcuadorDepartamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, EspañaUniversidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, ArgentinaDepartamento de Técnicas Cuantitativas, Universidad Centroccidental Lisandro Alvarado, Decanato de Ciencias Económicas y Empresariales, Barquisimeto, VenezuelaThis article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed in previous publications and the choice of the parameters involved, the established results in the work are obtained. In addition, some criteria are established to obtain the aforementioned inequalities based on other integral operators. Finally, a more generalized definition is suggested, with which interesting results can be obtained in the field of fractional integral inequalities.https://doi.org/10.1515/dema-2022-0149opial inequalityfractional integral operatorfractional calculus26d1026a33
spellingShingle Vivas-Cortez Miguel
Martínez Francisco
Valdes Juan E. Nápoles
Hernández Jorge E.
On Opial-type inequality for a generalized fractional integral operator
Demonstratio Mathematica
opial inequality
fractional integral operator
fractional calculus
26d10
26a33
title On Opial-type inequality for a generalized fractional integral operator
title_full On Opial-type inequality for a generalized fractional integral operator
title_fullStr On Opial-type inequality for a generalized fractional integral operator
title_full_unstemmed On Opial-type inequality for a generalized fractional integral operator
title_short On Opial-type inequality for a generalized fractional integral operator
title_sort on opial type inequality for a generalized fractional integral operator
topic opial inequality
fractional integral operator
fractional calculus
26d10
26a33
url https://doi.org/10.1515/dema-2022-0149
work_keys_str_mv AT vivascortezmiguel onopialtypeinequalityforageneralizedfractionalintegraloperator
AT martinezfrancisco onopialtypeinequalityforageneralizedfractionalintegraloperator
AT valdesjuanenapoles onopialtypeinequalityforageneralizedfractionalintegraloperator
AT hernandezjorgee onopialtypeinequalityforageneralizedfractionalintegraloperator