Meta-analysis of biodynamic (BD) preparations reveal the bacterial population involved in improving soil health, crop yield and quality

Background: Bacterial community found in biodynamic preparations (BD500–BD507) can help improve soil health, plant development, yield, and quality. The current work describes a metagenomic investigation of these preparations to identify the bacterial communities along with the functional diversity p...

Full description

Bibliographic Details
Main Authors: Supriya Vaish, Sumit K. Soni, Balvindra Singh, Neelima Garg, Iffat Zareen Ahmad, Muthukumar Manoharan, Ajaya Kumar Trivedi
Format: Article
Language:English
Published: SpringerOpen 2024-03-01
Series:Journal of Genetic Engineering and Biotechnology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1687157X23015160
Description
Summary:Background: Bacterial community found in biodynamic preparations (BD500–BD507) can help improve soil health, plant development, yield, and quality. The current work describes a metagenomic investigation of these preparations to identify the bacterial communities along with the functional diversity present within them. Results: Metagenome sequencing was performed using the Illumina MiSeq platform, which employs next-generation sequencing (NGS) technology, to provide an understanding of the bacterial communities and their functional diversity in BD preparations. NGS data of BD preparations revealed that maximum operational taxonomic units (OTUs) of the phylum Proteobacteria were present in BD506 (23429) followed by BD505 (22712) and BD501 (21591), respectively. Moreover, unclassified phylum (16657) and genus (16657) were also highest in BD506. Maximum alpha diversity was reported in BD501 (1095 OTU) and minimum in BD507 (257 OTU). Further, the OTUs for five major metabolic functional groups viz carbohydrate metabolism, xenobiotic degradation, membrane transport functions, energy metabolism, and enzyme activities were abundant in BD506 and BD501. Conclusion: The bacterial communities in BD506 and BD501 are found to be unique and rare; they belong to functional categories that are involved in enzyme activity, membrane transport, xenobiotic degradation, and carbohydrate metabolism. These preparations might therefore be thought to be more effective. The investigation also found a highly varied population of bacteria, which could explain why BD preparations work well in the field. In view of this, the BD preparations may be utilized for unexploited bacterial communities for sustainable agriculture production.
ISSN:1687-157X