On Some Arithmetical Properties of the Genocchi Numbers and Polynomials

<p/> <p>We investigate the properties of the Genocchi functions and the Genocchi polynomials. We obtain the Fourier transform on the Genocchi function. We have the generating function of <inline-formula> <graphic file="1687-1847-2008-195049-i1.gif"/></inline-form...

Full description

Bibliographic Details
Main Authors: Kim Young-Hee, Park KyoungHo
Format: Article
Language:English
Published: SpringerOpen 2008-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2008/195049
Description
Summary:<p/> <p>We investigate the properties of the Genocchi functions and the Genocchi polynomials. We obtain the Fourier transform on the Genocchi function. We have the generating function of <inline-formula> <graphic file="1687-1847-2008-195049-i1.gif"/></inline-formula>-Genocchi polynomials. We define the Cangul-Ozden-Simsek's type twisted <inline-formula> <graphic file="1687-1847-2008-195049-i2.gif"/></inline-formula>-Genocchi polynomials and numbers. We also have the generalized twisted <inline-formula> <graphic file="1687-1847-2008-195049-i3.gif"/></inline-formula>-Genocchi numbers attached to the Dirichlet's character <inline-formula> <graphic file="1687-1847-2008-195049-i4.gif"/></inline-formula>. Finally, we define zeta functions related to <inline-formula> <graphic file="1687-1847-2008-195049-i5.gif"/></inline-formula>-Genocchi polynomials and have the generating function of the generalized <inline-formula> <graphic file="1687-1847-2008-195049-i6.gif"/></inline-formula>-Genocchi numbers attached to <inline-formula> <graphic file="1687-1847-2008-195049-i7.gif"/></inline-formula>.</p>
ISSN:1687-1839
1687-1847