A preliminary study of calcium channel-associated mRNA and miRNA networks in post-traumatic epileptic rats

Abstract The calcium channels are the main pathogenesis and therapeutic target for post-traumatic epilepsy (PTE). However, differentially expressed miRNAs (DEMs) and mRNAs associated with calcium channels in PTE and their interactions are poorly understood. We produced a PTE model in rats and conduc...

Full description

Bibliographic Details
Main Authors: Xiao Jia, Yixun Ma, Xiaoyuan Zhang, Zefang Shen, Min Wang, Lufang Jiang, Xuan Wei, Chang Li, Mengzhou Zhang, Tiantong Yang
Format: Article
Language:English
Published: Nature Portfolio 2023-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-39485-9
Description
Summary:Abstract The calcium channels are the main pathogenesis and therapeutic target for post-traumatic epilepsy (PTE). However, differentially expressed miRNAs (DEMs) and mRNAs associated with calcium channels in PTE and their interactions are poorly understood. We produced a PTE model in rats and conducted RNA-seq in PTE rats. Gene annotation was used to verify differentially expressed mRNAs related to calcium channels. RNAhybrid, PITA, and Miranda prediction were used to build the miRNA–mRNA pairs. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used for the functional enrichment analysis of DEMs. The quantification changes of mRNA and miRNA were verified by RT-qPCR. There were 431 identified differentially expressed genes (DEGs) in PTE rats compared with the sham group, of which five mRNAs and 7 miRNAs were related to calcium channels. The miRNA–mRNA network suggested a negative correlation between 11 pairs of miRNA–mRNA involved in the p53 signaling pathway, HIF-1 signaling pathway. RT-qPCR verified three upregulated mRNAs in PTE rats, associated with 7 DEMs negatively related to them, respectively. This study has revealed the changes in miRNA–mRNA pairs associated with calcium channels in PTE, which might contribute to the further interpretation of potential underlying molecular mechanisms of PTE and the discovery of promising diagnostics.
ISSN:2045-2322