Summary: | A new electromagnetic cavity structure, a lattice of 3D cavities consisting of an array of posts and gaps is presented. The individual cavity elements are based on the cylindrical re-entrant (or Klystron) cavity. We show that these cavities can also be thought of as 3D split-ring resonators, which is confirmed by applying symmetry transformations, each of which is an electromagnetic resonator with spatially separated magnetic and electric field. The characteristics of the cavity is used to mimic phonon behaviour of a one-dimensional (1D) chain of atoms. It is demonstrated how magnetic field coupling can lead to phonon-like dispersion curves with acoustical and optical branches. The system is able to reproduce a number of effects typical to 1D lattices exhibiting acoustic vibration, such as band gaps, phonon trapping, and effects of impurities. In addition, quasicrystal emulations predict the results expected from this class of ordered structures. The system is easily scalable to simulate two-dimensional and 3D lattices and shows a new way to engineer arrays of coupled microwave resonators with a variety of possible applications to hybrid quantum systems proposed.
|