Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Go...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-09-01
|
Series: | Plant Communications |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590346222001055 |
_version_ | 1818050604801458176 |
---|---|
author | Zhenzhen Xu Jiedan Chen Shan Meng Peng Xu Caijiao Zhai Fang Huang Qi Guo Liang Zhao Yonggang Quan Yixin Shangguan Zhuang Meng Tian Wen Ya Zhang Xianggui Zhang Jun Zhao Jianwen Xu Jianguang Liu Jin Gao Wanchao Ni Xianglong Chen Wei Ji Nanyi Wang Xiaoxi Lu Shihong Wang Kai Wang Tianzhen Zhang Xinlian Shen |
author_facet | Zhenzhen Xu Jiedan Chen Shan Meng Peng Xu Caijiao Zhai Fang Huang Qi Guo Liang Zhao Yonggang Quan Yixin Shangguan Zhuang Meng Tian Wen Ya Zhang Xianggui Zhang Jun Zhao Jianwen Xu Jianguang Liu Jin Gao Wanchao Ni Xianglong Chen Wei Ji Nanyi Wang Xiaoxi Lu Shihong Wang Kai Wang Tianzhen Zhang Xinlian Shen |
author_sort | Zhenzhen Xu |
collection | DOAJ |
description | Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops. |
first_indexed | 2024-12-10T10:56:07Z |
format | Article |
id | doaj.art-98e34be7c91245d19be90b7cfa243a75 |
institution | Directory Open Access Journal |
issn | 2590-3462 |
language | English |
last_indexed | 2024-12-10T10:56:07Z |
publishDate | 2022-09-01 |
publisher | Elsevier |
record_format | Article |
series | Plant Communications |
spelling | doaj.art-98e34be7c91245d19be90b7cfa243a752022-12-22T01:51:53ZengElsevierPlant Communications2590-34622022-09-0135100350Genome sequence of Gossypium anomalum facilitates interspecific introgression breedingZhenzhen Xu0Jiedan Chen1Shan Meng2Peng Xu3Caijiao Zhai4Fang Huang5Qi Guo6Liang Zhao7Yonggang Quan8Yixin Shangguan9Zhuang Meng10Tian Wen11Ya Zhang12Xianggui Zhang13Jun Zhao14Jianwen Xu15Jianguang Liu16Jin Gao17Wanchao Ni18Xianglong Chen19Wei Ji20Nanyi Wang21Xiaoxi Lu22Shihong Wang23Kai Wang24Tianzhen Zhang25Xinlian Shen26Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaInstitute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China; Corresponding authorInstitute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Corresponding authorKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Corresponding authorCrop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.http://www.sciencedirect.com/science/article/pii/S2590346222001055wild diploid speciesGossypium anomalumgenomechromosome segment substitution linesdrought tolerancefiber strength |
spellingShingle | Zhenzhen Xu Jiedan Chen Shan Meng Peng Xu Caijiao Zhai Fang Huang Qi Guo Liang Zhao Yonggang Quan Yixin Shangguan Zhuang Meng Tian Wen Ya Zhang Xianggui Zhang Jun Zhao Jianwen Xu Jianguang Liu Jin Gao Wanchao Ni Xianglong Chen Wei Ji Nanyi Wang Xiaoxi Lu Shihong Wang Kai Wang Tianzhen Zhang Xinlian Shen Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding Plant Communications wild diploid species Gossypium anomalum genome chromosome segment substitution lines drought tolerance fiber strength |
title | Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding |
title_full | Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding |
title_fullStr | Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding |
title_full_unstemmed | Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding |
title_short | Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding |
title_sort | genome sequence of gossypium anomalum facilitates interspecific introgression breeding |
topic | wild diploid species Gossypium anomalum genome chromosome segment substitution lines drought tolerance fiber strength |
url | http://www.sciencedirect.com/science/article/pii/S2590346222001055 |
work_keys_str_mv | AT zhenzhenxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT jiedanchen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT shanmeng genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT pengxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT caijiaozhai genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT fanghuang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT qiguo genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT liangzhao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT yonggangquan genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT yixinshangguan genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT zhuangmeng genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT tianwen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT yazhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT xiangguizhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT junzhao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT jianwenxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT jianguangliu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT jingao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT wanchaoni genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT xianglongchen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT weiji genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT nanyiwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT xiaoxilu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT shihongwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT kaiwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT tianzhenzhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding AT xinlianshen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding |