Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding

Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Go...

Full description

Bibliographic Details
Main Authors: Zhenzhen Xu, Jiedan Chen, Shan Meng, Peng Xu, Caijiao Zhai, Fang Huang, Qi Guo, Liang Zhao, Yonggang Quan, Yixin Shangguan, Zhuang Meng, Tian Wen, Ya Zhang, Xianggui Zhang, Jun Zhao, Jianwen Xu, Jianguang Liu, Jin Gao, Wanchao Ni, Xianglong Chen, Wei Ji, Nanyi Wang, Xiaoxi Lu, Shihong Wang, Kai Wang, Tianzhen Zhang, Xinlian Shen
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Plant Communications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590346222001055
_version_ 1818050604801458176
author Zhenzhen Xu
Jiedan Chen
Shan Meng
Peng Xu
Caijiao Zhai
Fang Huang
Qi Guo
Liang Zhao
Yonggang Quan
Yixin Shangguan
Zhuang Meng
Tian Wen
Ya Zhang
Xianggui Zhang
Jun Zhao
Jianwen Xu
Jianguang Liu
Jin Gao
Wanchao Ni
Xianglong Chen
Wei Ji
Nanyi Wang
Xiaoxi Lu
Shihong Wang
Kai Wang
Tianzhen Zhang
Xinlian Shen
author_facet Zhenzhen Xu
Jiedan Chen
Shan Meng
Peng Xu
Caijiao Zhai
Fang Huang
Qi Guo
Liang Zhao
Yonggang Quan
Yixin Shangguan
Zhuang Meng
Tian Wen
Ya Zhang
Xianggui Zhang
Jun Zhao
Jianwen Xu
Jianguang Liu
Jin Gao
Wanchao Ni
Xianglong Chen
Wei Ji
Nanyi Wang
Xiaoxi Lu
Shihong Wang
Kai Wang
Tianzhen Zhang
Xinlian Shen
author_sort Zhenzhen Xu
collection DOAJ
description Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.
first_indexed 2024-12-10T10:56:07Z
format Article
id doaj.art-98e34be7c91245d19be90b7cfa243a75
institution Directory Open Access Journal
issn 2590-3462
language English
last_indexed 2024-12-10T10:56:07Z
publishDate 2022-09-01
publisher Elsevier
record_format Article
series Plant Communications
spelling doaj.art-98e34be7c91245d19be90b7cfa243a752022-12-22T01:51:53ZengElsevierPlant Communications2590-34622022-09-0135100350Genome sequence of Gossypium anomalum facilitates interspecific introgression breedingZhenzhen Xu0Jiedan Chen1Shan Meng2Peng Xu3Caijiao Zhai4Fang Huang5Qi Guo6Liang Zhao7Yonggang Quan8Yixin Shangguan9Zhuang Meng10Tian Wen11Ya Zhang12Xianggui Zhang13Jun Zhao14Jianwen Xu15Jianguang Liu16Jin Gao17Wanchao Ni18Xianglong Chen19Wei Ji20Nanyi Wang21Xiaoxi Lu22Shihong Wang23Kai Wang24Tianzhen Zhang25Xinlian Shen26Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaInstitute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, ChinaKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, ChinaJOIN HOPE SEEDS Co., Ltd., Changji, ChinaKey Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China; Corresponding authorInstitute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Corresponding authorKey Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Corresponding authorCrop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.http://www.sciencedirect.com/science/article/pii/S2590346222001055wild diploid speciesGossypium anomalumgenomechromosome segment substitution linesdrought tolerancefiber strength
spellingShingle Zhenzhen Xu
Jiedan Chen
Shan Meng
Peng Xu
Caijiao Zhai
Fang Huang
Qi Guo
Liang Zhao
Yonggang Quan
Yixin Shangguan
Zhuang Meng
Tian Wen
Ya Zhang
Xianggui Zhang
Jun Zhao
Jianwen Xu
Jianguang Liu
Jin Gao
Wanchao Ni
Xianglong Chen
Wei Ji
Nanyi Wang
Xiaoxi Lu
Shihong Wang
Kai Wang
Tianzhen Zhang
Xinlian Shen
Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
Plant Communications
wild diploid species
Gossypium anomalum
genome
chromosome segment substitution lines
drought tolerance
fiber strength
title Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
title_full Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
title_fullStr Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
title_full_unstemmed Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
title_short Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding
title_sort genome sequence of gossypium anomalum facilitates interspecific introgression breeding
topic wild diploid species
Gossypium anomalum
genome
chromosome segment substitution lines
drought tolerance
fiber strength
url http://www.sciencedirect.com/science/article/pii/S2590346222001055
work_keys_str_mv AT zhenzhenxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT jiedanchen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT shanmeng genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT pengxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT caijiaozhai genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT fanghuang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT qiguo genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT liangzhao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT yonggangquan genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT yixinshangguan genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT zhuangmeng genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT tianwen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT yazhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT xiangguizhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT junzhao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT jianwenxu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT jianguangliu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT jingao genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT wanchaoni genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT xianglongchen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT weiji genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT nanyiwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT xiaoxilu genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT shihongwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT kaiwang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT tianzhenzhang genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding
AT xinlianshen genomesequenceofgossypiumanomalumfacilitatesinterspecificintrogressionbreeding