Training-free neural architecture search: A review

The goal of neural architecture search (NAS) is to either downsize the neural architecture and model of a deep neural network (DNN), adjust a neural architecture to improve its end result, or even speed up the whole training process. Such improvements make it possible to generate or install the mode...

Full description

Bibliographic Details
Main Authors: Meng-Ting Wu, Chun-Wei Tsai
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:ICT Express
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405959523001443
Description
Summary:The goal of neural architecture search (NAS) is to either downsize the neural architecture and model of a deep neural network (DNN), adjust a neural architecture to improve its end result, or even speed up the whole training process. Such improvements make it possible to generate or install the model of a DNN on a small device, such as a device of internet of things or wireless sensor network. Because most NAS algorithms are time-consuming, finding out a way to reduce their computation costs has now become a critical research issue. The training-free method (also called the zero-shot learning) provides an alternative way to estimate how good a neural architecture is more efficiently during the process of NAS by using a lightweight score function instead of a general training process to avoid incurring heavy costs. This paper starts with a brief discussion of DNN and NAS, followed by a brief review of both model-dependent and model-independent training-free score functions. A brief introduction to the search algorithms and benchmarks that were widely used in a training-free NAS will also be given in this paper. The changes, potential, open issues, and future trends of this research topic are then addressed in the end of this paper.
ISSN:2405-9595