Blind Recognition of Forward Error Correction Codes Based on a Depth Distribution Algorithm

Forward error correction codes (FEC) are one of the vital sections of modern communication systems; therefore, recognition of the coding type is an important issue in non-cooperative communication. At present, the recognition of FEC codes is mainly concentrated in the field of semi-blind identificat...

Full description

Bibliographic Details
Main Authors: Fan Mei, Hong Chen, Yingke Lei
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/1094
Description
Summary:Forward error correction codes (FEC) are one of the vital sections of modern communication systems; therefore, recognition of the coding type is an important issue in non-cooperative communication. At present, the recognition of FEC codes is mainly concentrated in the field of semi-blind identification with known types of codes. However, based on information asymmetry, the receiver cannot know the types of channel coding previously used in non-cooperative systems such as cognitive radio and remote sensing of communication. Therefore, it is important to recognize the error-correcting encoding type with no prior information. Although the traditional algorithm can also recognize the type of codes, it is only applicable to the case without errors, and its practicability is poor. In the paper, we propose a new method to identify the types of FEC codes based on depth distribution in non-cooperative communication. The proposed algorithm can effectively recognize linear block codes, convolutional codes, and Turbo codes under a low error probability level, and has a higher robustness to noise transmission environment. In addition, an improved matrix estimation algorithm based on Gaussian elimination was adopted in this paper, which effectively improves the parameter identification in a noisy environment. Finally, we used a general framework to unify all the reconstruction algorithms to simplify the complexity of the algorithm. The simulation results show that, compared with the traditional algorithm based on matrix rank, the proposed algorithm has a better anti-interference performance. The method proposed is simple and convenient for engineering and practical applications.
ISSN:2073-8994