An Equivalent Linear Method to Predict Nonlinear Bending Mechanics of Dredging Floating Hose String

Dredging hoses are flexible and are particularly suitable for slurry transportations for mud or sand in dredging projects. To achieve sufficient bending stiffness and to prevent the pipe body from collapsing, this type of hose segment is a composite structure that is embedded with several cord reinf...

Full description

Bibliographic Details
Main Authors: Jingjing Liu, Long Yu, Xiaoyan Li, Jing Liu
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/3/421
Description
Summary:Dredging hoses are flexible and are particularly suitable for slurry transportations for mud or sand in dredging projects. To achieve sufficient bending stiffness and to prevent the pipe body from collapsing, this type of hose segment is a composite structure that is embedded with several cord reinforcement layers and steel wires in its rubber layer. To quickly evaluate the nonlinear bending mechanical properties of rubber hoses, this study proposes the equivalent stiffness method of linear superposition, which is verified by test data and numerical results. The results show that the equivalent bending stiffness method proposed in this study is in good agreement with numerical and experimental results. Then, by comparing the calculation results of the hose string, it was demonstrated that the linear stiffness superposition method proposed in this study can also accurately predict the bending mechanical behavior characteristics of string hose, and provide reliable guidance for hose design in practice.
ISSN:2077-1312