Summary: | Abstract Cervical cancer is a leading cause of death for women in low-resource settings despite being preventable through human papillomavirus (HPV) vaccination, early detection, and treatment of precancerous lesions. The World Health Organization recommends high-risk HPV (hrHPV) as the preferred cervical cancer screening strategy, which is difficult to implement in low-resource settings due to high costs, reliance on centralized laboratory infrastructure, and long sample-to-answer times. To help meet the need for rapid, low-cost, and decentralized cervical cancer screening, we developed tailed primer isothermal amplification and lateral flow detection assays for HPV16, HPV18, and HPV45 DNA. We translated these assays into a self-contained cartridge to achieve multiplexed detection of three hrHPV genotypes in a disposable cartridge. The developed test achieves clinically relevant limits of detection of 50–500 copies per reaction with extracted genomic DNA from HPV-positive cells. Finally, we performed sample-to-answer testing with direct lysates of HPV-negative and HPV-positive cell lines and demonstrated consistent detection of HPV16, HPV18, and HPV45 with 5000–50,000 cells/mL in < 35 min. With additional optimization to improve cartridge reliability, incorporation of additional hrHPV types, and validation with clinical samples, the assay could serve as a point-of-care HPV DNA test that improves access to cervical cancer screening in low-resource settings.
|