Einstein gravity from Conformal Gravity in 6D

Abstract We extend Maldacena’s argument, namely, obtaining Einstein gravity from Conformal Gravity, to six dimensional manifolds. The proof relies on a particular combination of conformal (and topological) invariants, which makes manifest the fact that 6D Conformal Gravity admits an Einstein sector....

Full description

Bibliographic Details
Main Authors: Giorgos Anastasiou, Ignacio J. Araya, Rodrigo Olea
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2021)134
_version_ 1831560258340782080
author Giorgos Anastasiou
Ignacio J. Araya
Rodrigo Olea
author_facet Giorgos Anastasiou
Ignacio J. Araya
Rodrigo Olea
author_sort Giorgos Anastasiou
collection DOAJ
description Abstract We extend Maldacena’s argument, namely, obtaining Einstein gravity from Conformal Gravity, to six dimensional manifolds. The proof relies on a particular combination of conformal (and topological) invariants, which makes manifest the fact that 6D Conformal Gravity admits an Einstein sector. Then, by taking generalized Neumann boundary conditions, the Conformal Gravity action reduces to the renormalized Einstein-AdS action. These restrictions are implied by the vanishing of the traceless Ricci tensor, which is the defining property of any Einstein spacetime. The equivalence between Conformal and Einstein gravity renders trivial the Einstein solutions of 6D Critical Gravity at the bicritical point.
first_indexed 2024-12-17T05:43:01Z
format Article
id doaj.art-990d8082646941c195a6465508cd9143
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-17T05:43:01Z
publishDate 2021-01-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-990d8082646941c195a6465508cd91432022-12-21T22:01:24ZengSpringerOpenJournal of High Energy Physics1029-84792021-01-012021113110.1007/JHEP01(2021)134Einstein gravity from Conformal Gravity in 6DGiorgos Anastasiou0Ignacio J. Araya1Rodrigo Olea2Instituto de Física, Pontificia Universidad Católica de ValparaísoDepartamento de Ciencias Físicas, Universidad Andres BelloDepartamento de Ciencias Físicas, Universidad Andres BelloAbstract We extend Maldacena’s argument, namely, obtaining Einstein gravity from Conformal Gravity, to six dimensional manifolds. The proof relies on a particular combination of conformal (and topological) invariants, which makes manifest the fact that 6D Conformal Gravity admits an Einstein sector. Then, by taking generalized Neumann boundary conditions, the Conformal Gravity action reduces to the renormalized Einstein-AdS action. These restrictions are implied by the vanishing of the traceless Ricci tensor, which is the defining property of any Einstein spacetime. The equivalence between Conformal and Einstein gravity renders trivial the Einstein solutions of 6D Critical Gravity at the bicritical point.https://doi.org/10.1007/JHEP01(2021)134AdS-CFT CorrespondenceClassical Theories of GravityConformal and W Symmetry
spellingShingle Giorgos Anastasiou
Ignacio J. Araya
Rodrigo Olea
Einstein gravity from Conformal Gravity in 6D
Journal of High Energy Physics
AdS-CFT Correspondence
Classical Theories of Gravity
Conformal and W Symmetry
title Einstein gravity from Conformal Gravity in 6D
title_full Einstein gravity from Conformal Gravity in 6D
title_fullStr Einstein gravity from Conformal Gravity in 6D
title_full_unstemmed Einstein gravity from Conformal Gravity in 6D
title_short Einstein gravity from Conformal Gravity in 6D
title_sort einstein gravity from conformal gravity in 6d
topic AdS-CFT Correspondence
Classical Theories of Gravity
Conformal and W Symmetry
url https://doi.org/10.1007/JHEP01(2021)134
work_keys_str_mv AT giorgosanastasiou einsteingravityfromconformalgravityin6d
AT ignaciojaraya einsteingravityfromconformalgravityin6d
AT rodrigoolea einsteingravityfromconformalgravityin6d