Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies

Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor’s genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even i...

Full description

Bibliographic Details
Main Authors: Suman C. Nath, Laura Menendez, Inbar Friedrich Ben-Nun
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/23/16929
Description
Summary:Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor’s genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even in iPSC clones, generated in a single reprogramming event, where the donor, somatic cell type, and reprogramming platform are the same. The diversity seen in iPSC lines often translates to epigenetic differences, as well as to differences in the expansion rate, iPSC line culture robustness, and their ability to differentiate into specific cell types. As such, the diversity of iPSCs presents a hurdle to standardizing iPSC-based cell therapy manufacturing. In this review, we will expand on the various factors that impact iPSC diversity and the strategies and tools that could be taken by the industry to overcome the differences amongst various iPSC lines, therefore enabling robust and reproducible iPSC-based cell therapy manufacturing processes.
ISSN:1661-6596
1422-0067