Majorization and Dynamics of Continuous Distributions

In this work we show how the concept of majorization in continuous distributions can be employed to characterize mixing, diffusive, and quantum dynamics along with the <i>H</i>-Boltzmann theorem. The key point lies in that the definition of majorization allows choosing a wide range of co...

Full description

Bibliographic Details
Main Authors: Ignacio S. Gomez, Bruno G. da Costa, Maike A. F. dos Santos
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/6/590
_version_ 1828137652835057664
author Ignacio S. Gomez
Bruno G. da Costa
Maike A. F. dos Santos
author_facet Ignacio S. Gomez
Bruno G. da Costa
Maike A. F. dos Santos
author_sort Ignacio S. Gomez
collection DOAJ
description In this work we show how the concept of majorization in continuous distributions can be employed to characterize mixing, diffusive, and quantum dynamics along with the <i>H</i>-Boltzmann theorem. The key point lies in that the definition of majorization allows choosing a wide range of convex functions <inline-formula> <math display="inline"> <semantics> <mi>ϕ</mi> </semantics> </math> </inline-formula> for studying a given dynamics. By choosing appropriate convex functions, mixing dynamics, generalized Fokker&#8722;Planck equations, and quantum evolutions are characterized as majorized ordered chains along the time evolution, being the stationary states the infimum elements. Moreover, assuming a dynamics satisfying continuous majorization, the <i>H</i>-Boltzmann theorem is obtained as a special case for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mi>x</mi> <mo form="prefix">ln</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-04-11T18:23:23Z
format Article
id doaj.art-991284b2044e4514a33306d38713ac62
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T18:23:23Z
publishDate 2019-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-991284b2044e4514a33306d38713ac622022-12-22T04:09:43ZengMDPI AGEntropy1099-43002019-06-0121659010.3390/e21060590e21060590Majorization and Dynamics of Continuous DistributionsIgnacio S. Gomez0Bruno G. da Costa1Maike A. F. dos Santos2Instituto de Física, Universidade Federal da Bahia, Rua Barao de Jeremoabo, Salvador–BA 40170-115, BrazilInstituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, BR 407, km 08, Petrolina 56314-520, Pernambuco, BrazilCentro Brasileiro de Pesquisas Físicas, Caixa Postal 15051, Rio de Janeiro CEP 91501-970, RJ, BrazilIn this work we show how the concept of majorization in continuous distributions can be employed to characterize mixing, diffusive, and quantum dynamics along with the <i>H</i>-Boltzmann theorem. The key point lies in that the definition of majorization allows choosing a wide range of convex functions <inline-formula> <math display="inline"> <semantics> <mi>ϕ</mi> </semantics> </math> </inline-formula> for studying a given dynamics. By choosing appropriate convex functions, mixing dynamics, generalized Fokker&#8722;Planck equations, and quantum evolutions are characterized as majorized ordered chains along the time evolution, being the stationary states the infimum elements. Moreover, assuming a dynamics satisfying continuous majorization, the <i>H</i>-Boltzmann theorem is obtained as a special case for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mi>x</mi> <mo form="prefix">ln</mo> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/1099-4300/21/6/590continuous majorizationordered chainconvex functions<i>H</i>-theorem
spellingShingle Ignacio S. Gomez
Bruno G. da Costa
Maike A. F. dos Santos
Majorization and Dynamics of Continuous Distributions
Entropy
continuous majorization
ordered chain
convex functions
<i>H</i>-theorem
title Majorization and Dynamics of Continuous Distributions
title_full Majorization and Dynamics of Continuous Distributions
title_fullStr Majorization and Dynamics of Continuous Distributions
title_full_unstemmed Majorization and Dynamics of Continuous Distributions
title_short Majorization and Dynamics of Continuous Distributions
title_sort majorization and dynamics of continuous distributions
topic continuous majorization
ordered chain
convex functions
<i>H</i>-theorem
url https://www.mdpi.com/1099-4300/21/6/590
work_keys_str_mv AT ignaciosgomez majorizationanddynamicsofcontinuousdistributions
AT brunogdacosta majorizationanddynamicsofcontinuousdistributions
AT maikeafdossantos majorizationanddynamicsofcontinuousdistributions