Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling

This paper presents the implementation of a measurement system that uses a four microphone array and a data-driven algorithm to estimate depth of cut during end milling operations. The audible range acoustic emission signals captured with the microphones are combined using a spectral subtraction and...

Full description

Bibliographic Details
Main Authors: Andrés Sio-Sever, Juan Manuel Lopez, César Asensio-Rivera, Antonio Vizan-Idoipe, Guillermo de Arcas
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/10/3807
_version_ 1797495682364342272
author Andrés Sio-Sever
Juan Manuel Lopez
César Asensio-Rivera
Antonio Vizan-Idoipe
Guillermo de Arcas
author_facet Andrés Sio-Sever
Juan Manuel Lopez
César Asensio-Rivera
Antonio Vizan-Idoipe
Guillermo de Arcas
author_sort Andrés Sio-Sever
collection DOAJ
description This paper presents the implementation of a measurement system that uses a four microphone array and a data-driven algorithm to estimate depth of cut during end milling operations. The audible range acoustic emission signals captured with the microphones are combined using a spectral subtraction and a blind source separation algorithm to reduce the impact of noise and reverberation. Afterwards, a set of features are extracted from these signals which are finally fed into a nonlinear regression algorithm assisted by machine learning techniques for the contactless monitoring of the milling process. The main advantages of this algorithm lie in relatively simple implementation and good accuracy in its results, which reduce the variance of the current noncontact monitoring systems. To validate this method, the results have been compared with the values obtained with a precision dynamometer and a geometric model algorithm obtaining a mean error of 1% while maintaining an STD below 0.2 mm.
first_indexed 2024-03-10T01:53:08Z
format Article
id doaj.art-99165230e96d46f48a7c8481e996fd99
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T01:53:08Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-99165230e96d46f48a7c8481e996fd992023-11-23T13:01:32ZengMDPI AGSensors1424-82202022-05-012210380710.3390/s22103807Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI ModellingAndrés Sio-Sever0Juan Manuel Lopez1César Asensio-Rivera2Antonio Vizan-Idoipe3Guillermo de Arcas4Grupo de Investigación en Instrumentación y Acústica Aplicada, Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28040 Madrid, SpainGrupo de Investigación en Instrumentación y Acústica Aplicada, Departamento de Telemática y Electrónica, Universidad Politécnica de Madrid, 28040 Madrid, SpainGrupo de Investigación en Instrumentación y Acústica Aplicada, Departamento de Teoria de la Señal y Comunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, SpainDepartamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28006 Madrid, SpainGrupo de Investigación en Instrumentación y Acústica Aplicada, Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28040 Madrid, SpainThis paper presents the implementation of a measurement system that uses a four microphone array and a data-driven algorithm to estimate depth of cut during end milling operations. The audible range acoustic emission signals captured with the microphones are combined using a spectral subtraction and a blind source separation algorithm to reduce the impact of noise and reverberation. Afterwards, a set of features are extracted from these signals which are finally fed into a nonlinear regression algorithm assisted by machine learning techniques for the contactless monitoring of the milling process. The main advantages of this algorithm lie in relatively simple implementation and good accuracy in its results, which reduce the variance of the current noncontact monitoring systems. To validate this method, the results have been compared with the values obtained with a precision dynamometer and a geometric model algorithm obtaining a mean error of 1% while maintaining an STD below 0.2 mm.https://www.mdpi.com/1424-8220/22/10/3807acoustic emissionmachiningmillingprocess monitoringmicrophonedata-driven modelling
spellingShingle Andrés Sio-Sever
Juan Manuel Lopez
César Asensio-Rivera
Antonio Vizan-Idoipe
Guillermo de Arcas
Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
Sensors
acoustic emission
machining
milling
process monitoring
microphone
data-driven modelling
title Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
title_full Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
title_fullStr Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
title_full_unstemmed Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
title_short Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
title_sort improved estimation of end milling parameters from acoustic emission signals using a microphone array assisted by ai modelling
topic acoustic emission
machining
milling
process monitoring
microphone
data-driven modelling
url https://www.mdpi.com/1424-8220/22/10/3807
work_keys_str_mv AT andressiosever improvedestimationofendmillingparametersfromacousticemissionsignalsusingamicrophonearrayassistedbyaimodelling
AT juanmanuellopez improvedestimationofendmillingparametersfromacousticemissionsignalsusingamicrophonearrayassistedbyaimodelling
AT cesarasensiorivera improvedestimationofendmillingparametersfromacousticemissionsignalsusingamicrophonearrayassistedbyaimodelling
AT antoniovizanidoipe improvedestimationofendmillingparametersfromacousticemissionsignalsusingamicrophonearrayassistedbyaimodelling
AT guillermodearcas improvedestimationofendmillingparametersfromacousticemissionsignalsusingamicrophonearrayassistedbyaimodelling