TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
中粮工科(西安)国际工程有限公司
2023-01-01
|
Series: | Zhongguo youzhi |
Subjects: | |
Online Access: | http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1 |
_version_ | 1797791753324986368 |
---|---|
author | 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1 |
author_facet | 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1 |
author_sort | 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1 |
collection | DOAJ |
description | 为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸收能力提高,酸性位点增加;相比溶胶凝胶法,固体分散法制备的Pt/TiO2-HZSM-5活性金属Pt分散度较好且无团聚现象,粒径更小,催化性能更优;在反应温度100 ℃、氢压0.4 MPa、反应时间12 h条件下,使用固体分散法制备的Pt/TiO2-HZSM-5光热催化麻疯树籽油制备生物燃油的原料转化率达93.20%、C8~C17烷烃选择性达54.92%,该催化剂的重复利用实验结果表明,催化剂再生后C8~C17烷烃选择性随着再生次数的增加而下降,可再生能力有待加强。
To improve the problems of low catalytic efficiency and difficult recovery of TiO2 in the photothermal catalysis process, the Pt/TiO2-HZSM-5 catalysts were prepared by combining TiO2 with HZSM-5 molecular sieve using solid dispersion method and sol-gel method, respectively, and loaded with active metal Pt.The two catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible light(UV-Vis), X-ray fluorescence (XRF) and pyridine-infrared (Py-IR), and used in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel to investigate the catalytic effects of the two modified catalysts.The results showed that TiO2 was successfully dispersed on the surface of the HZSM-5 molecular sieve,the specific surface area of TiO2 increased, and the pore volume and pore size of the HZSM-5 molecular sieve changed.The modified catalyst showed a significant red shift in the diffraction peak with improved absorption of visible light, and the acidic sites increased.Compared with sol-gel method,Pt/TiO2-HZSM-5 prepared by solid dispersion method had better Pt dispersion and no agglomeration phenomenon, smaller particle size and better catalytic performance. With this catalyst, the material conversion and C8-C17 alkanes selectivity reaching 93.20%and 54.92%respectively in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel under the conditions of reaction temperature 100 ℃,H2 pressure 0.4 MPa and reaction time 12 h. The results of the reuse experiments of this catalyst showed that the C8-C17 alkanes selectivity decreased with the increase of regeneration times, and the regeneration capacity should be strengthened. |
first_indexed | 2024-03-13T02:23:15Z |
format | Article |
id | doaj.art-9916ad2f090f4b2c8607a4130c9cb86b |
institution | Directory Open Access Journal |
issn | 1003-7969 |
language | English |
last_indexed | 2024-03-13T02:23:15Z |
publishDate | 2023-01-01 |
publisher | 中粮工科(西安)国际工程有限公司 |
record_format | Article |
series | Zhongguo youzhi |
spelling | doaj.art-9916ad2f090f4b2c8607a4130c9cb86b2023-06-30T07:31:47Zeng中粮工科(西安)国际工程有限公司Zhongguo youzhi1003-79692023-01-014815359,65https://doi.org/10.19902/j.cnki.zgyz.1003-7969.210695TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao101.云南师范大学 能源与环境科学学院,昆明 650500; 2.厦门大学嘉庚学院 环境科学与工程学院,福建 漳州363105; 3.云南省科学技术院,昆明 6502281.School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, China; 2. School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, Fujian, China; 3.Yunnan Provincial Academy of Science and Technology, Kunming 650228, China为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸收能力提高,酸性位点增加;相比溶胶凝胶法,固体分散法制备的Pt/TiO2-HZSM-5活性金属Pt分散度较好且无团聚现象,粒径更小,催化性能更优;在反应温度100 ℃、氢压0.4 MPa、反应时间12 h条件下,使用固体分散法制备的Pt/TiO2-HZSM-5光热催化麻疯树籽油制备生物燃油的原料转化率达93.20%、C8~C17烷烃选择性达54.92%,该催化剂的重复利用实验结果表明,催化剂再生后C8~C17烷烃选择性随着再生次数的增加而下降,可再生能力有待加强。 To improve the problems of low catalytic efficiency and difficult recovery of TiO2 in the photothermal catalysis process, the Pt/TiO2-HZSM-5 catalysts were prepared by combining TiO2 with HZSM-5 molecular sieve using solid dispersion method and sol-gel method, respectively, and loaded with active metal Pt.The two catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible light(UV-Vis), X-ray fluorescence (XRF) and pyridine-infrared (Py-IR), and used in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel to investigate the catalytic effects of the two modified catalysts.The results showed that TiO2 was successfully dispersed on the surface of the HZSM-5 molecular sieve,the specific surface area of TiO2 increased, and the pore volume and pore size of the HZSM-5 molecular sieve changed.The modified catalyst showed a significant red shift in the diffraction peak with improved absorption of visible light, and the acidic sites increased.Compared with sol-gel method,Pt/TiO2-HZSM-5 prepared by solid dispersion method had better Pt dispersion and no agglomeration phenomenon, smaller particle size and better catalytic performance. With this catalyst, the material conversion and C8-C17 alkanes selectivity reaching 93.20%and 54.92%respectively in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel under the conditions of reaction temperature 100 ℃,H2 pressure 0.4 MPa and reaction time 12 h. The results of the reuse experiments of this catalyst showed that the C8-C17 alkanes selectivity decreased with the increase of regeneration times, and the regeneration capacity should be strengthened.http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil |
spellingShingle | 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1 TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 Zhongguo youzhi 固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油 solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil |
title | TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
title_full | TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
title_fullStr | TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
title_full_unstemmed | TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
title_short | TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
title_sort | tio2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响 |
topic | 固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油 solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil |
url | http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1 |
work_keys_str_mv | AT yángyījié12liúyíng1zhāngwěi1liúnà1guìchāo1càizhèngdá3sūnlǔmǐn2chényùbǎo1yangyijie12liuying1zhangwei1liuna1guichao1caizhengda3sunlumin2chenyubao1 tio2cuīhuàjìgǎixìngfāngfǎduìguāngrècuīhuàmáfēngshùzǐyóuzhìbèishēngwùrányóudeyǐngxiǎng |