TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响

为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸...

Full description

Bibliographic Details
Main Author: 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1
Format: Article
Language:English
Published: 中粮工科(西安)国际工程有限公司 2023-01-01
Series:Zhongguo youzhi
Subjects:
Online Access:http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1
_version_ 1797791753324986368
author 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1
author_facet 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1
author_sort 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1
collection DOAJ
description 为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸收能力提高,酸性位点增加;相比溶胶凝胶法,固体分散法制备的Pt/TiO2-HZSM-5活性金属Pt分散度较好且无团聚现象,粒径更小,催化性能更优;在反应温度100 ℃、氢压0.4 MPa、反应时间12 h条件下,使用固体分散法制备的Pt/TiO2-HZSM-5光热催化麻疯树籽油制备生物燃油的原料转化率达93.20%、C8~C17烷烃选择性达54.92%,该催化剂的重复利用实验结果表明,催化剂再生后C8~C17烷烃选择性随着再生次数的增加而下降,可再生能力有待加强。 To improve the problems of low catalytic efficiency and difficult recovery of TiO2 in the photothermal catalysis process, the Pt/TiO2-HZSM-5 catalysts were prepared by combining TiO2 with HZSM-5 molecular sieve using solid dispersion method and sol-gel method, respectively, and loaded with active metal Pt.The two catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible light(UV-Vis), X-ray fluorescence (XRF) and pyridine-infrared (Py-IR), and used in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel to investigate the catalytic effects of the two modified catalysts.The results showed that TiO2 was successfully dispersed on the surface of the HZSM-5 molecular sieve,the specific surface area of TiO2 increased, and the pore volume and pore size of the HZSM-5 molecular sieve changed.The modified catalyst showed a significant red shift in the diffraction peak with improved absorption of visible light, and the acidic sites increased.Compared with sol-gel method,Pt/TiO2-HZSM-5 prepared by solid dispersion method had better Pt dispersion and no agglomeration phenomenon, smaller particle size and better catalytic performance. With this catalyst, the material conversion and C8-C17 alkanes selectivity reaching 93.20%and 54.92%respectively in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel under the conditions of reaction temperature 100 ℃,H2 pressure 0.4 MPa and reaction time 12 h. The results of the reuse experiments of this catalyst showed that the C8-C17 alkanes selectivity decreased with the increase of regeneration times, and the regeneration capacity should be strengthened.
first_indexed 2024-03-13T02:23:15Z
format Article
id doaj.art-9916ad2f090f4b2c8607a4130c9cb86b
institution Directory Open Access Journal
issn 1003-7969
language English
last_indexed 2024-03-13T02:23:15Z
publishDate 2023-01-01
publisher 中粮工科(西安)国际工程有限公司
record_format Article
series Zhongguo youzhi
spelling doaj.art-9916ad2f090f4b2c8607a4130c9cb86b2023-06-30T07:31:47Zeng中粮工科(西安)国际工程有限公司Zhongguo youzhi1003-79692023-01-014815359,65https://doi.org/10.19902/j.cnki.zgyz.1003-7969.210695TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao101.云南师范大学 能源与环境科学学院,昆明 650500; 2.厦门大学嘉庚学院 环境科学与工程学院,福建 漳州363105; 3.云南省科学技术院,昆明 6502281.School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, China; 2. School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, Fujian, China; 3.Yunnan Provincial Academy of Science and Technology, Kunming 650228, China为改善TiO2在光热催化过程中催化效率不高及回收困难等问题,分别使用固体分散法和溶胶凝胶法将TiO2与HZSM-5分子筛结合,并负载活性金属Pt制备Pt/TiO2-HZSM-5催化剂,对两种催化剂进行X射线衍射(XRD)、N2吸附-脱附、高分辨率透射电镜(HRTEM)、紫外-可见光(UV-Vis)、X射线荧光(XRF)及吡啶-红外(Py-IR)表征,并用于光热催化麻疯树籽油加氢制备生物燃油中,考察两种改性催化剂的催化效果。结果表明:两种制备方法均可使TiO2成功分散在HZSM-5分子筛表面,TiO2的比表面积增加,HZSM-5分子筛孔容和孔径改变;改性后的催化剂衍射峰出现明显红移,对可见光的吸收能力提高,酸性位点增加;相比溶胶凝胶法,固体分散法制备的Pt/TiO2-HZSM-5活性金属Pt分散度较好且无团聚现象,粒径更小,催化性能更优;在反应温度100 ℃、氢压0.4 MPa、反应时间12 h条件下,使用固体分散法制备的Pt/TiO2-HZSM-5光热催化麻疯树籽油制备生物燃油的原料转化率达93.20%、C8~C17烷烃选择性达54.92%,该催化剂的重复利用实验结果表明,催化剂再生后C8~C17烷烃选择性随着再生次数的增加而下降,可再生能力有待加强。 To improve the problems of low catalytic efficiency and difficult recovery of TiO2 in the photothermal catalysis process, the Pt/TiO2-HZSM-5 catalysts were prepared by combining TiO2 with HZSM-5 molecular sieve using solid dispersion method and sol-gel method, respectively, and loaded with active metal Pt.The two catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible light(UV-Vis), X-ray fluorescence (XRF) and pyridine-infrared (Py-IR), and used in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel to investigate the catalytic effects of the two modified catalysts.The results showed that TiO2 was successfully dispersed on the surface of the HZSM-5 molecular sieve,the specific surface area of TiO2 increased, and the pore volume and pore size of the HZSM-5 molecular sieve changed.The modified catalyst showed a significant red shift in the diffraction peak with improved absorption of visible light, and the acidic sites increased.Compared with sol-gel method,Pt/TiO2-HZSM-5 prepared by solid dispersion method had better Pt dispersion and no agglomeration phenomenon, smaller particle size and better catalytic performance. With this catalyst, the material conversion and C8-C17 alkanes selectivity reaching 93.20%and 54.92%respectively in the photothermal catalytic hydrogenation of Jatropha oil for the preparation of bio-fuel under the conditions of reaction temperature 100 ℃,H2 pressure 0.4 MPa and reaction time 12 h. The results of the reuse experiments of this catalyst showed that the C8-C17 alkanes selectivity decreased with the increase of regeneration times, and the regeneration capacity should be strengthened.http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil
spellingShingle 杨依婕1,2, 刘莹1, 张伟1, 刘娜1, 桂超1, 蔡正达3,孙鲁闽2,陈玉保1 YANG Yijie1,2, LIU Ying1, ZHANG Wei1, LIU Na1, GUI Chao1, CAI Zhengda3, SUN Lumin2, CHEN Yubao1
TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
Zhongguo youzhi
固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油
solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil
title TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
title_full TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
title_fullStr TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
title_full_unstemmed TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
title_short TiO2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
title_sort tio2 催化剂改性方法对光热催化麻疯树籽油制备 生物燃油的影响
topic 固体分散法;溶胶凝胶法;催化剂改性;光热催化;生物燃油;麻疯树籽油
solid dispersion method; sol-gel method; catalyst modification; photothermal catalysis; bio-fuel; jatropha oil
url http://tg.chinaoils.cn/ch/reader/create_pdf.aspx?file_no=20230110&year_id=2023&quarter_id=1&falg=1
work_keys_str_mv AT yángyījié12liúyíng1zhāngwěi1liúnà1guìchāo1càizhèngdá3sūnlǔmǐn2chényùbǎo1yangyijie12liuying1zhangwei1liuna1guichao1caizhengda3sunlumin2chenyubao1 tio2cuīhuàjìgǎixìngfāngfǎduìguāngrècuīhuàmáfēngshùzǐyóuzhìbèishēngwùrányóudeyǐngxiǎng