Superheavy dark matter in $$R+R^2$$ R + R 2 cosmology with conformal anomaly

Abstract Cosmological evolution and particle creation in $$R^2$$ R 2 -modified gravity are considered for the case of the dominant decay of the scalaron into a pair of gauge bosons due to conformal anomaly. It is shown that in the process of thermalization superheavy dark matter with the coupling st...

Full description

Bibliographic Details
Main Authors: E. V. Arbuzova, A. D. Dolgov, R. S. Singh
Format: Article
Language:English
Published: SpringerOpen 2020-11-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-08627-y
Description
Summary:Abstract Cosmological evolution and particle creation in $$R^2$$ R 2 -modified gravity are considered for the case of the dominant decay of the scalaron into a pair of gauge bosons due to conformal anomaly. It is shown that in the process of thermalization superheavy dark matter with the coupling strength typical for the GUT SUSY can be created. Such dark matter would have the proper cosmological density if the particle mass is close to $$10^{12}$$ 10 12 GeV.
ISSN:1434-6044
1434-6052