Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study
The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0 G/0 F]8S, Hybrid II [04G/04F]S...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2022-11-01
|
Series: | Journal of Natural Fibers |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/15440478.2020.1856277 |
Summary: | The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0 G/0 F]8S, Hybrid II [04G/04F]S, and Hybrid III [04G/(90/0)2F]S) were investigated. The experimental results obtained from end notch flexural tests showed that both the mode II fracture toughness and flexural strength of Hybrid I composites were higher than those for Hybrid II & III composites. This was attributed to the presence of bridging in several interfaces of the flax plies and the glass plies in Hybrid I. A second delamination propagation between the flax/epoxy midplane plies was observed in Hybrid II and III and this helped to lower both the mode II fracture toughness and flexural strength. The finite element simulations employed the virtual crack closure technique and the cohesive zone model. The results showed that both methods successfully predicted mode II interlaminar fracture toughness characteristics of the Hybrid I composites, but significantly overpredicted the values for both Hybrid II & III due to the presence of a secondary delamination propagation. |
---|---|
ISSN: | 1544-0478 1544-046X |