Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
We study the anisotropic boundary-value problem $$displaylines{ -sum^{N}_{i=1}frac{partial}{partial x_{i}}a_{i}(x,frac{partial}{partial x_{i}}u)=f quad hbox{in } Omega, cr u=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^{N}$ $(Ngeq 3)$. We obtain th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2009-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2009/144/abstr.html |
Summary: | We study the anisotropic boundary-value problem $$displaylines{ -sum^{N}_{i=1}frac{partial}{partial x_{i}}a_{i}(x,frac{partial}{partial x_{i}}u)=f quad hbox{in } Omega, cr u=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^{N}$ $(Ngeq 3)$. We obtain the existence and uniqueness of a weak energy solution for $fin L^{infty}(Omega)$, and the existence of weak energy solution for general data $f$ dependent on $u$. |
---|---|
ISSN: | 1072-6691 |