Weak solutions for anisotropic nonlinear elliptic equations with variable exponents

We study the anisotropic boundary-value problem $$displaylines{ -sum^{N}_{i=1}frac{partial}{partial x_{i}}a_{i}(x,frac{partial}{partial x_{i}}u)=f quad hbox{in } Omega, cr u=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^{N}$ $(Ngeq 3)$. We obtain th...

Full description

Bibliographic Details
Main Authors: Sado Traore, Stanislas Ouaro, Blaise Kone
Format: Article
Language:English
Published: Texas State University 2009-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/144/abstr.html
_version_ 1828310016675807232
author Sado Traore
Stanislas Ouaro
Blaise Kone
author_facet Sado Traore
Stanislas Ouaro
Blaise Kone
author_sort Sado Traore
collection DOAJ
description We study the anisotropic boundary-value problem $$displaylines{ -sum^{N}_{i=1}frac{partial}{partial x_{i}}a_{i}(x,frac{partial}{partial x_{i}}u)=f quad hbox{in } Omega, cr u=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^{N}$ $(Ngeq 3)$. We obtain the existence and uniqueness of a weak energy solution for $fin L^{infty}(Omega)$, and the existence of weak energy solution for general data $f$ dependent on $u$.
first_indexed 2024-04-13T15:37:48Z
format Article
id doaj.art-99315f62e91b46d69a1f122fe9d9ce5f
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T15:37:48Z
publishDate 2009-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-99315f62e91b46d69a1f122fe9d9ce5f2022-12-22T02:41:14ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-11-012009144,111Weak solutions for anisotropic nonlinear elliptic equations with variable exponentsSado TraoreStanislas OuaroBlaise KoneWe study the anisotropic boundary-value problem $$displaylines{ -sum^{N}_{i=1}frac{partial}{partial x_{i}}a_{i}(x,frac{partial}{partial x_{i}}u)=f quad hbox{in } Omega, cr u=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^{N}$ $(Ngeq 3)$. We obtain the existence and uniqueness of a weak energy solution for $fin L^{infty}(Omega)$, and the existence of weak energy solution for general data $f$ dependent on $u$.http://ejde.math.txstate.edu/Volumes/2009/144/abstr.htmlAnisotropic Sobolev spacesweak energy solutionvariable exponentselectrorheological fluids
spellingShingle Sado Traore
Stanislas Ouaro
Blaise Kone
Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
Electronic Journal of Differential Equations
Anisotropic Sobolev spaces
weak energy solution
variable exponents
electrorheological fluids
title Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
title_full Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
title_fullStr Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
title_full_unstemmed Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
title_short Weak solutions for anisotropic nonlinear elliptic equations with variable exponents
title_sort weak solutions for anisotropic nonlinear elliptic equations with variable exponents
topic Anisotropic Sobolev spaces
weak energy solution
variable exponents
electrorheological fluids
url http://ejde.math.txstate.edu/Volumes/2009/144/abstr.html
work_keys_str_mv AT sadotraore weaksolutionsforanisotropicnonlinearellipticequationswithvariableexponents
AT stanislasouaro weaksolutionsforanisotropicnonlinearellipticequationswithvariableexponents
AT blaisekone weaksolutionsforanisotropicnonlinearellipticequationswithvariableexponents